# Nest survival model using JAGS 
# Only fixed effects at this time
#
# 2019-06-30 CHJS First Edition
#

library("R2jags")  # used for call to JAGS
## Loading required package: rjags
## Loading required package: coda
## Linked to JAGS 4.3.0
## Loaded modules: basemod,bugs
## 
## Attaching package: 'R2jags'
## The following object is masked from 'package:coda':
## 
##     traceplot
library(coda)
library(ggplot2)
## Registered S3 methods overwritten by 'ggplot2':
##   method         from 
##   [.quosures     rlang
##   c.quosures     rlang
##   print.quosures rlang
library(reshape2)

options(width=200)

source(file.path("..","..","jags-nest-survival-fixed-effects.r"))


# The input dataframe must contain the following fields with the following names
#
#    NestID: id code of the nest (alpha numeric)
#    FirstFound: day the nest was first found
#    LastPresent: last day that a chick was present in the nest
#    LastChecked: last day the nest was checked
#    Fate: fate of the nest; 0 = success; 1=fail
#    AgheDay1 = age of the nest on day 1 (if you are fitting age of nest models) 
#
# You could also have a nest level covariates, survey level covariates, and
# next x survey time covariates as well

nestdata <- readxl::read_excel(file.path("..","Killdeer.xlsx"), 
                               sheet="killdeer-age")
nestdata <- plyr::rename(nestdata, c("id"="NestId"))
head(nestdata)
## # A tibble: 6 x 7
##   NestId FirstFound LastPresent LastChecked  Fate  Freq AgeDay1
##   <chr>       <dbl>       <dbl>       <dbl> <dbl> <dbl>   <dbl>
## 1 /*A*/           1           9           9     0     1       0
## 2 /*B*/           5           5           9     1     1      -2
## 3 /*C*/           5          40          40     0     1      -3
## 4 /*D*/           9          32          32     0     1      -4
## 5 /*E*/           7           8           8     0     1      -4
## 6 /*F*/           3          15          15     0     1       1
# Unfortunately, JAGS cannot deal with alpha numeric code and 
# so we need to convert the alphanumberic NestID to numeric codes
# by declaring NestId as a factor and extracting the level values
nestdata$NestId.num <- as.numeric(factor(nestdata$NestId))

# We must create a file with every combination of next x day nest was "active"
# being every day from FirstCound to LastChecked-1

nesttime <- plyr::adply(nestdata, 1, function(x){
     nesttime <- expand.grid(NestId.num=x$NestId.num, 
                             Day=x$FirstFound:(x$LastChecked-1),
                             stringsAsFactors=FALSE)
     nesttime
})


# Extract the nest level covariates (including AgeNest1)
# The next level covariates should be indexed using NestId
# If AgeNest1 variable is present then the age of the nest is computed
#
nest.covariates <- NULL

if( !is.null(nest.covariates)){
   nesttime <- merge(nesttime, nest.covariates, by="NestId")
}


# Extract any survey time covariates such as time, time^2, early/late
# weather covariates ect.
# All of these covariates will affect all nests simultaneouls
nesttime $Day2 <- (nesttime$Day-20)^2  # day^2 for quadratic trends
nesttime $Period <- car::recode(nesttime$Day,
                    paste("lo:", (max(nesttime$Day)+min(nesttime$Day))/2, "='Early';",
                          "else='Late'"))
xtabs(~Period+Day, data=nesttime, exclude=NULL, na.action=na.pass)
##        Day
## Period   1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
##   Early  1  1  2  2  4  4  5  6  5  5  5  5  6  6  6  8  7  7  7  7  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
##   Late   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  8  8  9  9  9  9 10 10  9  9  9  6  4  3  3  3  2  2  2
# if there is a AgeDay1 variable, we compute the nest age for each time for each nest
if( !is.null(nesttime$AgeDay1)){
   nesttime$NestAge <- nesttime$AgeDay1 + nesttime$Day -1
}
head(nesttime)
##   NestId FirstFound LastPresent LastChecked Fate Freq AgeDay1 NestId.num Day Day2 Period NestAge
## 1  /*A*/          1           9           9    0    1       0          1   1  361  Early       0
## 2  /*A*/          1           9           9    0    1       0          1   2  324  Early       1
## 3  /*A*/          1           9           9    0    1       0          1   3  289  Early       2
## 4  /*A*/          1           9           9    0    1       0          1   4  256  Early       3
## 5  /*A*/          1           9           9    0    1       0          1   5  225  Early       4
## 6  /*A*/          1           9           9    0    1       0          1   6  196  Early       5
# Add any next x day survey covariates to the nesttime data
#

# there is nothing here for this example


# Set up the design matrix for the fixed effects
fe.design <- model.matrix(  ~ 1, data=nesttime)

head(fe.design)
##   (Intercept)
## 1           1
## 2           1
## 3           1
## 4           1
## 5           1
## 6           1
# Finally, load and run the JAGS model
fitted.model <- jags.nest.survival.fixed.effects(
         nestdata=nestdata,    # nest data
         nesttime=nesttime,    # daily nest values with nest, time, nest x time covariates
         fe.design=fe.design,  # fixed effects design matrix
         init.seed=12321312)   # initial seed)  
## module glm loaded
## Compiling data graph
##    Declaring variables
##    Resolving undeclared variables
##    Allocating nodes
##    Initializing
##    Reading data back into data table
## Compiling model graph
##    Declaring variables
##    Resolving undeclared variables
##    Allocating nodes
## Graph information:
##    Observed stochastic nodes: 22
##    Unobserved stochastic nodes: 1
##    Total graph size: 803
## 
## Initializing model
# the nesttime dataframe has the estimated DSR for every combination of NestId.num and Day

# in this case, we fit a S~1 model, so all rows of nesttime have the same estimated DSR
fitted.model$nesttime[1,]
##   NestId.num Day NestId FirstFound LastPresent LastChecked Fate Freq AgeDay1 Day2 Period NestAge   mean         sd     X2.5.      X25.     X50.      X75.    X97.5.     Rhat n.eff
## 1          1   1  /*A*/          1           9           9    0    1       0  361  Early       0 0.9722 0.01111064 0.9470893 0.9656048 0.973443 0.9801735 0.9897591 1.000883  4500
# the results list has lots of other stuff
results <- fitted.model$results
names(results)
## [1] "model"              "BUGSoutput"         "parameters.to.save" "model.file"         "n.iter"             "DIC"
names(results$BUGSoutput)
##  [1] "n.chains"        "n.iter"          "n.burnin"        "n.thin"          "n.keep"          "n.sims"          "sims.array"      "sims.list"       "sims.matrix"     "summary"        
## [11] "mean"            "sd"              "median"          "root.short"      "long.short"      "dimension.short" "indexes.short"   "last.values"     "program"         "model.file"     
## [21] "isDIC"           "DICbyR"          "pD"              "DIC"
# we can also look at the beta estimates
# in this case this is the logit DSR which is the same for all nest x days
results$BUGSoutput$summary[ grepl("beta", row.names(results$BUGSoutput$summary)),,drop=FALSE]
##          mean        sd     2.5%      25%      50%     75%    97.5%    Rhat n.eff
## beta 3.636509 0.4282816 2.884788 3.334836 3.601548 3.90071 4.571069 1.00093  4500
#######################################

# get the full summary table
results$BUGSoutput$summary
##               mean         sd       2.5%        25%       50%        75%      97.5%     Rhat n.eff
## S[1,1]    0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[1,2]    0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[1,3]    0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[6,3]    0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[1,4]    0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[6,4]    0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[1,5]    0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[2,5]    0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[3,5]    0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[6,5]    0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[1,6]    0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[2,6]    0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[3,6]    0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[6,6]    0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[1,7]    0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[2,7]    0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[3,7]    0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[5,7]    0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[6,7]    0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[1,8]    0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[2,8]    0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[3,8]    0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[6,8]    0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[7,8]    0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[9,8]    0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[3,9]    0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[4,9]    0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[6,9]    0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[7,9]    0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[9,9]    0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[3,10]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[4,10]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[6,10]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[7,10]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[9,10]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[3,11]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[4,11]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[6,11]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[7,11]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[9,11]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[3,12]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[4,12]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[6,12]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[7,12]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[9,12]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[3,13]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[4,13]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[6,13]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[7,13]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[9,13]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[10,13]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[3,14]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[4,14]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[6,14]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[7,14]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[8,14]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[11,14]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[3,15]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[4,15]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[7,15]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[8,15]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[11,15]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[12,15]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[3,16]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[4,16]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[7,16]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[11,16]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[12,16]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[13,16]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[14,16]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[15,16]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[3,17]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[4,17]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[7,17]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[11,17]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[12,17]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[13,17]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[14,17]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[3,18]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[4,18]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[7,18]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[11,18]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[12,18]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[13,18]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[14,18]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[3,19]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[4,19]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[7,19]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[11,19]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[12,19]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[13,19]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[14,19]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[3,20]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[4,20]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[7,20]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[11,20]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[12,20]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[13,20]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[14,20]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[3,21]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[4,21]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[7,21]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[11,21]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[12,21]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[13,21]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[14,21]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[16,21]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[3,22]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[4,22]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[7,22]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[11,22]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[12,22]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[13,22]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[14,22]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[16,22]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[3,23]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[4,23]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[7,23]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[11,23]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[12,23]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[13,23]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[14,23]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[16,23]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[17,23]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[3,24]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[4,24]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[7,24]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[11,24]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[12,24]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[13,24]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[14,24]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[16,24]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[17,24]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[3,25]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[4,25]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[7,25]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[11,25]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[12,25]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[13,25]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[14,25]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[16,25]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[17,25]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[3,26]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[4,26]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[7,26]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[11,26]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[12,26]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[13,26]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[14,26]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[16,26]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[17,26]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[3,27]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[4,27]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[7,27]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[11,27]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[12,27]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[13,27]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[14,27]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[16,27]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[17,27]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[18,27]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[3,28]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[4,28]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[7,28]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[11,28]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[12,28]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[13,28]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[14,28]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[16,28]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[17,28]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[18,28]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[3,29]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[4,29]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[7,29]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[11,29]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[12,29]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[13,29]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[14,29]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[16,29]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[17,29]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[3,30]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[4,30]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[7,30]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[11,30]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[12,30]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[13,30]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[14,30]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[16,30]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[17,30]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[3,31]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[4,31]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[7,31]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[11,31]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[12,31]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[13,31]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[14,31]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[16,31]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[17,31]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[3,32]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[11,32]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[12,32]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[13,32]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[16,32]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[17,32]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[3,33]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[12,33]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[13,33]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[17,33]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[3,34]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[12,34]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[13,34]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[3,35]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[12,35]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[13,35]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[3,36]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[12,36]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[13,36]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[3,37]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[13,37]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[3,38]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[13,38]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[3,39]   0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## S[13,39]  0.972200 0.01111064  0.9470893  0.9656048  0.973443  0.9801735  0.9897591 1.000883  4500
## beta      3.636509 0.42828160  2.8847878  3.3348363  3.601548  3.9007101  4.5710693 1.000930  4500
## deviance 43.521831 1.48866734 42.5113204 42.6147795 42.955421 43.7840171 47.8513413 1.001939  1600
results$BUGSoutput$summary[grepl("beta",rownames(results$BUGSoutput$summary)),
                           c("mean", "sd", "2.5%","97.5%","Rhat", "n.eff")]
##         mean           sd         2.5%        97.5%         Rhat        n.eff 
##    3.6365091    0.4282816    2.8847878    4.5710693    1.0009298 4500.0000000
# get just the means
results$BUGSoutput$mean
## $S
##         [,1]   [,2]   [,3]   [,4]   [,5]   [,6]   [,7]   [,8]   [,9]  [,10]  [,11]  [,12]  [,13]  [,14]  [,15]  [,16]  [,17]  [,18]  [,19]  [,20]  [,21]  [,22]  [,23]  [,24]  [,25]  [,26]  [,27]
##  [1,] 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722
##  [2,] 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722
##  [3,] 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722
##  [4,] 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722
##  [5,] 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722
##  [6,] 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722
##  [7,] 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722
##  [8,] 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722
##  [9,] 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722
## [10,] 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722
## [11,] 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722
## [12,] 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722
## [13,] 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722
## [14,] 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722
## [15,] 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722
## [16,] 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722
## [17,] 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722
## [18,] 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722
##        [,28]  [,29]  [,30]  [,31]  [,32]  [,33]  [,34]  [,35]  [,36]  [,37]  [,38]  [,39]
##  [1,] 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722
##  [2,] 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722
##  [3,] 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722
##  [4,] 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722
##  [5,] 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722
##  [6,] 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722
##  [7,] 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722
##  [8,] 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722
##  [9,] 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722
## [10,] 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722
## [11,] 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722
## [12,] 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722
## [13,] 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722
## [14,] 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722
## [15,] 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722
## [16,] 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722
## [17,] 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722
## [18,] 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722 0.9722
## 
## $beta
## [1] 3.636509
## 
## $deviance
## [1] 43.52183
results$BUGSoutput$mean$parm
## NULL
# the results$BUGSoutput$sims.array is a 3-d object [iterations, chains, variables]
# that can be used for posterior plots, diagnostics etc
parm <- "beta"
dim(results$BUGSoutput$sims.array)
## [1] 1500    3  225
#results$BUGSoutput$sims.array[1:5,,]
results$BUGSoutput$sims.array[1:5,1,parm,drop=FALSE]
## , , beta
## 
##          [,1]
## [1,] 3.295938
## [2,] 3.607257
## [3,] 3.432225
## [4,] 3.643801
## [5,] 3.494060
# the results$BUGSoutput$sims.matrix is a 2-d object [iterations, variables] with chains stacked
# on top of each other
dim(results$BUGSoutput$sims.matrix)
## [1] 4500  225
#results$BUGSoutput$sims.matrix[1:5,]
results$BUGSoutput$sims.matrix[1:5,parm,drop=FALSE]
##          beta
## [1,] 2.678632
## [2,] 3.280311
## [3,] 3.909404
## [4,] 3.530549
## [5,] 3.057137
# make a posterior density plot of the parameter
plotdata <- data.frame(parm=results$BUGSoutput$sims.matrix[,parm], stringsAsFactors=FALSE)
head(plotdata)
##       parm
## 1 2.678632
## 2 3.280311
## 3 3.909404
## 4 3.530549
## 5 3.057137
## 6 3.586671
postplot.parm <- ggplot2::ggplot( data=plotdata, aes(x=parm, y=..density..))+
  geom_histogram(alpha=0.3)+
  geom_density()+
  ggtitle(paste("Posterior density plot for ", parm))
postplot.parm
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

#ggsave(plot=postplot.parm, file='...posterior.png', h=4, w=6, units="in", dpi=300)



# make a trace plot (notice we use the sims.array here)
plotdata <- data.frame(results$BUGSoutput$sims.array[,,parm,drop=FALSE], stringsAsFactors=FALSE)
plotdata$iteration <- 1:nrow(plotdata)
head(plotdata)
##    X1.beta  X2.beta  X3.beta iteration
## 1 3.295938 3.782221 3.263847         1
## 2 3.607257 3.127559 2.876422         2
## 3 3.432225 3.343433 3.089447         3
## 4 3.643801 3.565407 3.000498         4
## 5 3.494060 4.021540 3.810255         5
## 6 4.014514 3.170581 3.674709         6
# convert from wide to long format
plotdata2 <- reshape2::melt(data=plotdata, 
                            id.vars="iteration",
                            measure.vars=paste("X",1:results$BUGSoutput$n.chains,".",parm,sep=""),
                            variable.name="chain",
                            value.name=parm)
head(plotdata2)
##   iteration   chain     beta
## 1         1 X1.beta 3.295938
## 2         2 X1.beta 3.607257
## 3         3 X1.beta 3.432225
## 4         4 X1.beta 3.643801
## 5         5 X1.beta 3.494060
## 6         6 X1.beta 4.014514
traceplot.parm <- ggplot2::ggplot(data=plotdata2, aes_string(x="iteration", y=parm, color="chain"))+
  ggtitle("Trace plot")+
  geom_line(alpha=.2)
traceplot.parm

#ggsave(plot=traceplot.parm, file='....-trace-parm.png', h=4, w=6, units="in", dpi=300)


# autocorrelation plot
# First compute the autocorrelation plot
acf.parm <-acf( results$BUGSoutput$sims.matrix[,parm,drop=FALSE], plot=FALSE)
acf.parm
## 
## Autocorrelations of series 'results$BUGSoutput$sims.matrix[, parm, drop = FALSE]', by lag
## 
##      0      1      2      3      4      5      6      7      8      9     10     11     12     13     14     15     16     17     18     19     20     21     22     23     24     25     26     27 
##  1.000  0.024  0.007 -0.024 -0.019  0.005 -0.012  0.008  0.012  0.008  0.046  0.007  0.027 -0.026  0.008 -0.021 -0.010  0.010  0.012  0.022 -0.006 -0.009  0.021  0.010 -0.017 -0.036  0.034 -0.008 
##     28     29     30     31     32     33     34     35     36 
##  0.017 -0.011 -0.005  0.001 -0.007  0.029  0.019 -0.001  0.004
acfplot.parm <- ggplot(data=with(acf.parm, data.frame(lag, acf)), aes(x = lag, y = acf)) +
  ggtitle(paste("Autocorrelation plot for ",parm))+
  geom_hline(aes(yintercept = 0)) +
  geom_segment(aes(xend = lag, yend = 0))
acfplot.parm

#ggsave(plot=acfplot.parm, file="...-acf-parm.png",h=4, w=6, units="in", dpi=300)


# You can save the results information to an r-object for retreival later using a load# command

#save(list=c("results"), file="results.Rdata")
#load(file="results.Rdata")