# Analysis of mallard data illustrating basic RMark features
# How to fit a nest level continous covariate (Robel height
# 2019-05-01 CJS Initial code
# This is the mallard data that ships with RMark
library(ggplot2)
## Registered S3 methods overwritten by 'ggplot2':
## method from
## [.quosures rlang
## c.quosures rlang
## print.quosures rlang
library(readxl)
library(RMark)
## This is RMark 2.2.6
## Documentation available at http://www.phidot.org/software/mark/rmark/RMarkDocumentation.zip
# The dataframe must contain the following fields with the following names
#
# FirstFound: day the nest was first found
# LastPresent: last day that a chick was present in the nest
# LastChecked: last day the nest was checked
# Fate: fate of the nest; 0=hatch an
# Freq: number of nests with this data
#
# Also contains the following fields
# Robel - Measurement of Robel pole of visibility of nest
# PpnGrass - proportion of grassland cover on the 10.4 km2 study site t
# AgeFound - Age of nest when found
# AgeDay1 - Age of nest on day 1 of study (can be negative)
# Habitat - N=Native; P=Planted; W=Wetland; R=roadside right of way
#
# In this example, the multiple visits to a nest have been collapsed
# to a single record for each nest.
# In more complex examples, you may have multple records per nest
# as shown in the mallard example.
#
malldata <- readxl::read_excel(file.path("..","mallard.xlsx"),
sheet="mallard")
head(malldata)
## # A tibble: 6 x 10
## FirstFound LastPresent LastChecked Fate Freq Robel PpnGrass AgeFound
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 73 89 89 0 1 6 0.800 13
## 2 63 90 90 0 1 3.75 0.668 5
## 3 70 70 76 1 1 3.75 0.800 13
## 4 63 81 85 1 1 3.12 0.668 6
## 5 61 61 66 1 1 4.5 0.668 4
## 6 57 57 61 1 1 4.25 0.668 1
## # ... with 2 more variables: AgeDay1 <dbl>, Habitat <chr>
malldata <- as.data.frame(malldata)
# what are the parameters of the model
# There is only one parameter, the daily survival probality (S)
setup.parameters("Nest", check=TRUE)
## [1] "S"
# 1. Process the data.
# The nocc variable the number of sampling occasions in the data
mall.proc <- process.data(malldata, model="Nest",
nocc=max(malldata$LastChecked))
mall.proc
## $data
## FirstFound LastPresent LastChecked Fate freq Robel PpnGrass AgeFound
## 1 73 89 89 0 1 6.000 0.8002 13
## 2 63 90 90 0 1 3.750 0.6684 5
## 3 70 70 76 1 1 3.750 0.8002 13
## 4 63 81 85 1 1 3.125 0.6684 6
## 5 61 61 66 1 1 4.500 0.6684 4
## 6 57 57 61 1 1 4.250 0.6684 1
## 7 67 88 88 0 1 8.000 0.6684 12
## 8 58 87 87 0 1 5.875 0.4651 3
## 9 74 86 86 0 1 4.500 0.8002 20
## 10 65 65 70 1 1 3.625 0.8002 11
## 11 63 88 88 0 1 5.250 0.8666 10
## 12 61 66 70 1 1 3.625 0.6684 8
## 13 63 84 84 0 1 3.750 0.8002 11
## 14 74 74 78 1 1 5.625 0.8002 22
## 15 56 56 63 1 1 4.875 0.6684 4
## 16 57 87 87 0 1 3.500 0.6684 5
## 17 74 86 86 0 1 3.375 0.8002 22
## 18 68 87 87 0 1 4.875 0.8002 16
## 19 56 56 63 1 1 3.875 0.6684 4
## 20 66 66 73 1 1 3.375 0.8002 15
## 21 81 84 84 0 1 5.750 0.8002 30
## 22 63 63 68 1 1 5.250 0.8666 13
## 23 56 56 63 1 1 5.875 0.6684 7
## 24 56 63 69 1 1 5.750 0.6684 7
## 25 74 84 84 0 1 4.125 0.8002 25
## 26 55 64 69 1 1 5.875 0.4651 7
## 27 56 80 80 0 1 5.000 0.6684 8
## 28 56 56 63 1 1 2.250 0.6684 8
## 29 50 60 64 1 1 3.750 0.7281 2
## 30 58 58 63 1 1 3.375 0.6684 10
## 31 58 73 77 1 1 1.875 0.8666 10
## 32 57 80 80 0 1 2.250 0.8666 9
## 33 63 63 68 1 1 4.625 0.8002 16
## 34 60 79 79 0 1 6.125 0.6684 13
## 35 61 61 66 1 1 4.750 0.6684 14
## 36 56 69 74 1 1 4.125 0.6684 9
## 37 65 81 81 0 1 5.000 0.8002 18
## 38 57 68 73 1 1 3.000 0.4651 11
## 39 73 76 76 0 1 4.875 0.8002 27
## 40 54 64 68 1 1 5.000 0.4651 8
## 41 75 79 79 0 1 3.750 0.8002 29
## 42 55 55 59 1 1 3.000 0.6684 9
## 43 50 56 60 1 1 5.500 0.7281 4
## 44 58 58 64 1 1 5.625 0.8666 12
## 45 62 80 80 0 1 4.875 0.6684 16
## 46 54 74 74 0 1 4.625 0.4651 9
## 47 61 66 70 1 1 3.250 0.8666 16
## 48 73 76 76 0 1 6.000 0.8002 28
## 49 52 52 57 1 1 4.250 0.7281 7
## 50 53 75 75 0 1 4.750 0.7281 9
## 51 52 61 66 1 1 3.375 0.7281 8
## 52 63 78 78 0 1 4.750 0.8666 19
## 53 63 77 77 0 1 3.625 0.8002 19
## 54 70 70 76 1 1 4.375 0.8002 26
## 55 73 79 79 0 1 3.750 0.8002 29
## 56 59 77 77 0 1 4.125 0.8666 15
## 57 50 50 56 1 1 3.625 0.7281 7
## 58 63 73 73 0 1 2.750 0.8666 20
## 59 63 73 73 0 1 3.500 0.8002 20
## 60 49 49 55 1 1 3.750 0.4651 6
## 61 56 63 69 1 1 6.250 0.6684 14
## 62 47 53 59 1 1 5.250 0.4651 5
## 63 44 44 48 1 1 4.125 0.4651 2
## 64 55 74 74 0 1 5.125 0.4651 14
## 65 45 56 61 1 1 4.750 0.4651 4
## 66 47 53 59 1 1 6.875 0.4651 7
## 67 61 61 66 1 1 4.500 0.6684 21
## 68 61 61 66 1 1 4.625 0.6684 21
## 69 67 70 70 0 1 5.625 0.6684 27
## 70 55 68 68 0 1 4.375 0.4651 15
## 71 43 46 50 1 1 4.750 0.8666 3
## 72 47 67 67 0 1 3.875 0.8666 7
## 73 64 73 73 0 1 3.500 0.8002 24
## 74 50 60 64 1 1 1.875 0.7281 11
## 75 63 63 68 1 1 2.500 0.8002 24
## 76 54 68 74 1 1 4.625 0.4651 15
## 77 64 64 69 1 1 3.500 0.8002 25
## 78 43 70 70 0 1 4.625 0.5079 4
## 79 42 46 46 0 1 5.750 0.4651 4
## 80 60 60 65 1 1 3.750 0.8666 22
## 81 43 46 46 0 1 3.875 0.8666 5
## 82 61 69 69 0 1 4.750 0.6684 23
## 83 61 66 70 1 1 4.125 0.6684 23
## 84 68 72 72 0 1 4.875 0.8002 30
## 85 52 65 69 1 1 4.125 0.7281 14
## 86 47 71 71 0 1 3.625 0.8666 9
## 87 65 70 72 1 1 4.375 0.8002 28
## 88 43 43 49 1 1 4.000 0.4651 6
## 89 41 46 46 0 1 2.375 0.3344 4
## 90 43 46 50 1 1 5.125 0.8666 6
## 91 56 72 72 0 1 5.500 0.6684 19
## 92 42 68 72 1 1 5.875 0.4651 5
## 93 63 67 67 0 1 4.125 0.8002 26
## 94 62 70 70 0 1 4.500 0.8666 25
## 95 55 66 66 0 1 3.750 0.4651 18
## 96 44 72 72 0 1 3.750 0.8666 7
## 97 67 68 68 0 1 9.250 0.6684 31
## 98 61 65 65 0 1 4.625 0.6684 25
## 99 62 67 67 0 1 3.500 0.6684 26
## 100 42 57 60 1 1 5.375 0.3344 6
## 101 52 52 57 1 1 2.875 0.7281 16
## 102 50 64 69 1 1 4.000 0.7281 14
## 103 48 55 60 1 1 5.875 0.7281 12
## 104 63 67 67 0 1 4.625 0.8666 27
## 105 62 67 67 0 1 5.000 0.6684 26
## 106 63 67 67 0 1 4.375 0.6684 28
## 107 43 55 60 1 1 3.375 0.5079 8
## 108 40 50 56 1 1 2.375 0.3344 5
## 109 60 60 65 1 1 5.500 0.6684 25
## 110 42 64 68 1 1 1.750 0.5079 7
## 111 59 70 70 0 1 4.500 0.6684 24
## 112 42 66 66 0 1 2.875 0.3344 7
## 113 40 40 44 1 1 4.625 0.7265 6
## 114 46 46 52 1 1 5.250 0.4651 12
## 115 58 63 63 0 1 4.875 0.8666 24
## 116 40 60 64 1 1 3.375 0.3344 6
## 117 40 50 56 1 1 2.875 0.3344 6
## 118 42 46 46 0 1 5.375 0.4651 8
## 119 40 44 50 1 1 2.875 0.3344 6
## 120 42 42 48 1 1 2.625 0.3344 9
## 121 57 66 68 1 1 4.750 0.6684 24
## 122 63 67 67 0 1 2.750 0.8666 30
## 123 40 44 50 1 1 4.625 0.7265 7
## 124 47 67 67 0 1 4.375 0.7281 14
## 125 57 57 61 1 1 4.250 0.6684 24
## 126 40 44 50 1 1 4.000 0.3344 7
## 127 38 55 65 1 1 4.875 0.3344 5
## 128 56 56 63 1 1 4.500 0.6684 24
## 129 58 63 63 0 1 5.875 0.8666 26
## 130 60 66 66 0 1 5.250 0.6684 28
## 131 40 66 66 0 1 2.875 0.3344 8
## 132 40 50 56 1 1 3.000 0.3344 8
## 133 40 63 63 0 1 3.250 0.3344 8
## 134 47 63 63 0 1 4.250 0.4651 15
## 135 37 65 65 0 1 4.750 0.4651 5
## 136 60 66 66 0 1 5.125 0.8666 28
## 137 38 38 44 1 1 5.500 0.3344 7
## 138 40 40 44 1 1 3.000 0.3344 9
## 139 41 63 63 0 1 5.000 0.5079 10
## 140 44 65 65 0 1 3.500 0.8666 13
## 141 42 46 46 0 1 5.125 0.4651 11
## 142 55 63 63 0 1 5.125 0.4651 24
## 143 47 66 66 0 1 2.750 0.4651 16
## 144 41 57 62 1 1 3.875 0.7265 10
## 145 48 66 66 0 1 6.250 0.7281 17
## 146 40 40 44 1 1 3.375 0.3344 9
## 147 55 63 63 0 1 4.875 0.4651 25
## 148 40 40 44 1 1 3.500 0.3344 10
## 149 41 62 65 1 1 4.000 0.5079 11
## 150 38 38 43 1 1 2.000 0.3344 8
## 151 58 58 64 1 1 5.125 0.8666 28
## 152 41 45 51 1 1 3.375 0.3344 11
## 153 36 36 41 1 1 2.750 0.3344 6
## 154 40 40 44 1 1 2.875 0.3344 10
## 155 62 63 63 0 1 2.500 0.6684 32
## 156 38 38 44 1 1 4.250 0.3344 8
## 157 35 40 45 1 1 4.125 0.3344 5
## 158 36 64 64 0 1 4.250 0.3344 6
## 159 35 35 40 1 1 2.875 0.3344 5
## 160 36 41 46 1 1 2.750 0.3344 7
## 161 40 61 61 0 1 3.000 0.3344 11
## 162 47 63 63 0 1 3.000 0.4651 18
## 163 31 31 36 1 1 4.125 0.6587 2
## 164 34 37 42 1 1 1.750 0.1876 5
## 165 55 63 63 0 1 5.250 0.4651 26
## 166 38 43 49 1 1 3.875 0.3344 9
## 167 35 35 40 1 1 3.750 0.3344 6
## 168 40 64 64 0 1 2.500 0.4651 11
## 169 36 36 42 1 1 2.000 0.3344 7
## 170 31 60 60 0 1 1.250 0.1876 3
## 171 38 55 60 1 1 3.625 0.3344 10
## 172 35 57 57 0 1 3.250 0.3344 7
## 173 43 63 63 0 1 3.500 0.4651 15
## 174 43 47 55 1 1 3.625 0.5079 15
## 175 29 29 34 1 1 3.375 0.1876 2
## 176 43 59 59 0 1 3.875 0.5079 16
## 177 40 55 55 0 1 2.000 0.7265 13
## 178 41 45 51 1 1 2.500 0.3344 14
## 179 54 62 62 0 1 4.500 0.4651 27
## 180 36 51 51 0 1 4.625 0.3344 9
## 181 37 42 48 1 1 4.000 0.3344 10
## 182 43 59 59 0 1 3.500 0.5079 16
## 183 41 62 62 0 1 3.500 0.5079 14
## 184 40 55 61 1 1 6.750 0.7265 13
## 185 30 42 42 0 1 4.875 0.6587 3
## 186 36 59 59 0 1 4.125 0.3344 10
## 187 31 31 36 1 1 3.375 0.6587 5
## 188 54 59 61 1 1 4.625 0.4651 28
## 189 35 52 56 1 1 3.000 0.3344 9
## 190 42 46 46 0 1 5.125 0.4651 16
## 191 38 55 60 1 1 2.750 0.3344 12
## 192 54 61 61 0 1 2.875 0.4651 28
## 193 54 61 61 0 1 3.875 0.4651 28
## 194 27 31 31 0 1 3.400 0.6587 1
## 195 34 58 58 0 1 5.125 0.9671 8
## 196 40 50 56 1 1 3.500 0.3344 14
## 197 48 55 60 1 1 3.250 0.7281 23
## 198 31 31 36 1 1 2.875 0.6587 6
## 199 31 31 36 1 1 3.750 0.6587 6
## 200 31 42 46 1 1 4.000 0.6587 6
## 201 31 46 54 1 1 3.625 0.6587 6
## 202 31 58 58 0 1 4.875 0.6587 6
## 203 34 34 38 1 1 4.500 0.9671 9
## 204 31 58 58 0 1 3.625 0.9671 6
## 205 31 42 46 1 1 2.500 0.9671 6
## 206 40 44 50 1 1 3.250 0.3344 15
## 207 43 59 59 0 1 4.875 0.5079 18
## 208 41 50 50 0 1 3.000 0.3344 17
## 209 29 29 34 1 1 3.125 0.1876 5
## 210 36 36 40 1 1 2.875 0.3344 12
## 211 41 45 51 1 1 3.000 0.3344 17
## 212 25 25 29 1 1 4.250 0.9671 1
## 213 36 52 58 1 1 4.500 0.3344 12
## 214 31 42 46 1 1 3.375 0.9671 7
## 215 31 58 58 0 1 4.375 0.6587 7
## 216 31 31 42 1 1 4.750 0.1876 7
## 217 31 56 56 0 1 2.000 0.1876 7
## 218 31 31 36 1 1 1.750 0.1876 7
## 219 31 46 54 1 1 4.000 0.6587 7
## 220 30 56 56 0 1 1.125 0.6587 6
## 221 25 30 35 1 1 3.375 0.6587 2
## 222 31 31 36 1 1 3.750 0.6587 8
## 223 32 34 34 0 1 4.250 0.9671 9
## 224 47 47 51 1 1 4.250 0.7281 24
## 225 29 29 34 1 1 3.125 0.1876 6
## 226 30 30 41 1 1 3.250 0.6587 7
## 227 26 35 35 0 1 2.250 0.9671 3
## 228 35 41 45 1 1 4.625 0.3344 12
## 229 52 58 58 0 1 4.250 0.4651 29
## 230 26 30 30 0 1 1.750 0.9671 3
## 231 26 48 48 0 1 2.125 0.6587 4
## 232 31 55 55 0 1 4.375 0.6587 9
## 233 28 35 40 1 1 5.125 0.1876 6
## 234 34 34 37 1 1 3.000 0.1876 12
## 235 31 31 36 1 1 3.500 0.6587 9
## 236 31 42 46 1 1 2.625 0.9671 9
## 237 29 40 45 1 1 3.625 0.1876 8
## 238 41 41 45 1 1 2.875 0.3344 20
## 239 35 56 56 0 1 3.375 0.3344 14
## 240 27 30 34 1 1 0.750 0.9671 6
## 241 29 29 34 1 1 3.125 0.1876 8
## 242 25 25 32 1 1 3.125 0.6587 4
## 243 31 31 36 1 1 4.000 0.6587 10
## 244 31 53 53 0 1 3.500 0.9671 10
## 245 22 45 53 1 1 1.000 0.6587 1
## 246 40 40 44 1 1 2.625 0.3344 20
## 247 26 40 45 1 1 3.750 0.6587 6
## 248 26 26 30 1 1 1.375 0.6587 6
## 249 29 34 37 1 1 3.500 0.1876 9
## 250 41 55 55 0 1 3.875 0.7265 21
## 251 40 54 54 0 1 5.625 0.7265 20
## 252 40 40 44 1 1 3.000 0.3344 20
## 253 29 51 51 0 1 2.250 0.1876 10
## 254 31 46 54 1 1 3.625 0.6587 12
## 255 27 34 40 1 1 2.375 0.9671 8
## 256 26 30 35 1 1 2.875 0.9671 7
## 257 27 30 35 1 1 4.000 0.9671 8
## 258 25 49 54 1 1 4.375 0.9671 6
## 259 23 51 51 0 1 3.125 0.9378 4
## 260 23 23 27 1 1 2.250 0.6587 4
## 261 32 53 53 0 1 4.167 0.9671 13
## 262 45 50 54 1 1 3.875 0.4651 26
## 263 27 37 42 1 1 4.000 0.6587 8
## 264 28 54 54 0 1 2.875 0.1876 9
## 265 29 40 45 1 1 3.000 0.1876 10
## 266 26 35 41 1 1 2.500 0.9671 8
## 267 26 40 40 0 1 1.500 0.9671 8
## 268 29 29 34 1 1 2.375 0.1876 11
## 269 36 53 53 0 1 4.375 0.3344 18
## 270 35 53 53 0 1 2.625 0.3344 17
## 271 47 52 52 0 1 4.375 0.8666 29
## 272 31 46 53 1 1 3.375 0.9671 13
## 273 25 25 29 1 1 2.750 0.9671 7
## 274 31 52 52 0 1 1.625 0.9671 13
## 275 46 51 51 0 1 5.500 0.4651 28
## 276 36 40 45 1 1 3.750 0.3344 18
## 277 30 30 41 1 1 2.250 0.6587 12
## 278 26 30 30 0 1 2.250 0.9671 9
## 279 24 52 52 0 1 3.625 0.6587 7
## 280 41 50 50 0 1 2.000 0.7265 24
## 281 40 49 49 0 1 2.375 0.7265 23
## 282 29 52 52 0 1 4.375 0.6587 12
## 283 36 46 46 0 1 1.750 0.3344 20
## 284 31 51 51 0 1 3.500 0.9671 15
## 285 43 50 51 1 1 4.500 0.8666 27
## 286 40 51 51 0 1 5.625 0.3344 24
## 287 40 49 49 0 1 5.125 0.7265 24
## 288 32 44 44 0 1 5.750 0.1876 16
## 289 20 31 31 0 1 2.625 0.9378 5
## 290 19 19 21 1 1 3.250 0.9378 4
## 291 23 32 37 1 1 3.125 0.6587 8
## 292 47 48 48 0 1 3.000 0.8666 32
## 293 44 48 48 0 1 3.000 0.8666 29
## 294 21 30 30 0 1 3.625 0.9248 6
## 295 22 22 27 1 1 1.375 0.9378 7
## 296 25 46 46 0 1 5.375 0.6587 10
## 297 29 44 50 1 1 4.500 0.6587 14
## 298 29 29 34 1 1 2.625 0.1876 14
## 299 41 50 50 0 1 3.750 0.3344 26
## 300 38 38 43 1 1 3.750 0.3344 23
## 301 40 46 46 0 1 2.625 0.3344 26
## 302 21 30 41 1 1 1.000 0.9248 7
## 303 21 25 30 1 1 3.125 0.9248 7
## 304 40 49 49 0 1 3.375 0.3344 26
## 305 36 49 49 0 1 6.250 0.3344 22
## 306 40 49 49 0 1 6.750 0.7265 26
## 307 43 44 44 0 1 3.500 0.5079 29
## 308 23 46 46 0 1 5.000 0.9378 9
## 309 22 37 42 1 1 2.750 0.9378 8
## 310 31 49 49 0 1 3.250 0.6587 17
## 311 23 46 46 0 1 3.625 0.9378 9
## 312 44 44 48 1 1 5.125 0.4651 30
## 313 40 48 48 0 1 3.250 0.3344 26
## 314 17 17 23 1 1 2.625 0.9248 4
## 315 47 48 48 0 1 3.500 0.8666 34
## 316 35 46 46 0 1 3.500 0.1876 22
## 317 22 47 47 0 1 2.250 0.6587 9
## 318 16 22 22 0 1 3.125 0.9248 3
## 319 20 28 31 1 1 1.000 0.9378 7
## 320 17 23 29 1 1 5.875 0.9248 4
## 321 29 29 34 1 1 3.500 0.1876 16
## 322 32 43 47 1 1 4.500 0.9671 19
## 323 29 40 45 1 1 3.125 0.1876 16
## 324 23 47 47 0 1 3.250 0.6587 11
## 325 19 46 46 0 1 2.625 0.6607 7
## 326 20 36 36 0 1 1.000 0.9378 8
## 327 25 29 32 1 1 3.375 0.9671 13
## 328 27 31 37 1 1 2.375 0.6587 15
## 329 21 25 29 1 1 2.125 0.9378 9
## 330 21 29 34 1 1 1.750 0.9378 9
## 331 35 47 47 0 1 3.625 0.3344 23
## 332 21 31 36 1 1 2.625 0.9378 9
## 333 42 47 47 0 1 4.250 0.5079 30
## 334 22 37 42 1 1 1.375 0.9378 10
## 335 21 44 44 0 1 1.625 0.9378 10
## 336 29 34 37 1 1 2.000 0.1876 18
## 337 20 42 46 1 1 3.375 0.9248 9
## 338 20 20 24 1 1 2.375 0.9378 9
## 339 12 21 25 1 1 0.875 0.8765 1
## 340 30 46 46 0 1 2.375 0.6587 19
## 341 14 24 29 1 1 5.000 0.6607 3
## 342 14 21 25 1 1 4.375 0.9248 3
## 343 17 17 22 1 1 2.375 0.6607 6
## 344 13 13 17 1 1 3.375 0.8765 2
## 345 13 13 17 1 1 3.250 0.8765 2
## 346 13 21 21 0 1 3.375 0.8765 2
## 347 17 17 22 1 1 2.625 0.6607 6
## 348 23 42 42 0 1 2.875 0.9378 12
## 349 21 46 46 0 1 2.000 0.9378 10
## 350 21 46 46 0 1 2.250 0.9378 10
## 351 32 44 44 0 1 4.750 0.9671 22
## 352 23 27 32 1 1 3.250 0.6587 13
## 353 16 22 22 0 1 4.875 0.9248 6
## 354 15 24 27 1 1 3.625 0.9248 5
## 355 21 29 34 1 1 1.875 0.9378 11
## 356 36 41 41 0 1 3.125 0.3344 26
## 357 12 45 45 0 1 2.500 0.2290 2
## 358 20 20 24 1 1 1.875 0.9378 11
## 359 35 41 41 0 1 2.500 0.1876 26
## 360 25 43 43 0 1 5.000 0.9671 16
## 361 26 44 44 0 1 2.750 0.9671 17
## 362 31 44 44 0 1 3.500 0.9671 22
## 363 16 35 41 1 1 3.500 0.6607 7
## 364 22 25 31 1 1 6.000 0.6587 13
## 365 27 31 37 1 1 2.125 0.6587 18
## 366 31 44 44 0 1 3.500 0.6587 22
## 367 9 9 13 1 1 5.125 0.9197 1
## 368 16 34 34 0 1 4.250 0.6607 8
## 369 13 43 43 0 1 2.250 0.6607 5
## 370 11 15 21 1 1 3.375 0.2290 3
## 371 21 36 36 0 1 3.500 0.9378 13
## 372 16 16 21 1 1 2.875 0.6607 8
## 373 13 13 17 1 1 2.250 0.8765 5
## 374 15 15 20 1 1 3.125 0.9248 7
## 375 31 43 43 0 1 3.125 0.6587 23
## 376 13 17 17 0 1 2.750 0.8765 6
## 377 8 8 12 1 1 3.625 0.9378 1
## 378 15 20 25 1 1 6.375 0.6607 8
## 379 22 25 31 1 1 2.625 0.6587 15
## 380 24 37 37 0 1 2.250 0.9671 17
## 381 16 25 29 1 1 2.875 0.6607 9
## 382 24 39 39 0 1 3.625 0.9671 17
## 383 25 41 41 0 1 1.625 0.9671 18
## 384 10 42 42 0 1 4.250 0.2290 3
## 385 23 27 32 1 1 2.750 0.6587 16
## 386 16 35 35 0 1 3.500 0.6607 9
## 387 17 41 41 0 1 1.625 0.9248 10
## 388 26 39 39 0 1 5.500 0.6587 20
## 389 7 12 17 1 1 4.375 0.2290 1
## 390 17 34 40 1 1 4.375 0.9248 11
## 391 16 40 40 0 1 4.125 0.6607 10
## 392 25 32 33 1 1 3.375 0.9671 19
## 393 11 15 21 1 1 3.125 0.8765 5
## 394 14 20 20 0 1 4.125 0.6607 8
## 395 15 25 29 1 1 0.875 0.6607 9
## 396 16 39 39 0 1 3.750 0.6607 10
## 397 20 24 28 1 1 2.250 0.9378 15
## 398 9 40 40 0 1 1.375 0.9197 4
## 399 11 34 38 1 1 2.750 0.8765 6
## 400 23 36 36 0 1 2.250 0.9378 18
## 401 14 37 37 0 1 0.625 0.9248 9
## 402 22 22 27 1 1 1.000 0.9378 17
## 403 22 40 40 0 1 4.875 0.9378 17
## 404 21 40 40 0 1 2.125 0.9248 16
## 405 10 10 15 1 1 3.250 0.2290 5
## 406 23 23 27 1 1 2.750 0.6587 18
## 407 10 10 14 1 1 3.000 0.9197 5
## 408 28 32 38 1 1 3.625 0.6587 23
## 409 16 34 34 0 1 3.375 0.6607 11
## 410 34 38 38 0 1 4.250 0.9671 29
## 411 13 32 32 0 1 1.875 0.6607 8
## 412 13 28 32 1 1 3.250 0.6607 8
## 413 13 28 32 1 1 1.500 0.2290 8
## 414 12 16 22 1 1 3.250 0.2290 7
## 415 11 35 35 0 1 1.250 0.2290 6
## 416 10 24 27 1 1 3.625 0.9197 5
## 417 6 15 20 1 1 4.000 0.2290 1
## 418 13 21 21 0 1 3.125 0.8765 9
## 419 10 10 15 1 1 3.500 0.2290 6
## 420 10 15 21 1 1 3.250 0.2290 6
## 421 10 25 29 1 1 3.375 0.2290 6
## 422 10 15 21 1 1 5.875 0.2290 6
## 423 10 10 15 1 1 3.250 0.2290 6
## 424 10 10 15 1 1 5.000 0.2290 6
## 425 11 15 21 1 1 3.375 0.2290 7
## 426 13 23 28 1 1 2.500 0.2290 9
## 427 13 32 37 1 1 2.625 0.2290 9
## 428 13 20 23 1 1 3.125 0.6607 9
## 429 15 25 29 1 1 2.125 0.6607 11
## 430 8 8 12 1 1 1.750 0.9197 4
## 431 9 31 31 0 1 3.500 0.9197 5
## 432 9 25 31 1 1 3.125 0.9197 5
## 433 10 20 24 1 1 2.125 0.9197 6
## 434 10 27 27 0 1 3.375 0.9197 6
## 435 11 21 24 1 1 4.125 0.8765 7
## 436 21 21 25 1 1 4.250 0.9248 17
## 437 13 30 30 0 1 2.750 0.8765 9
## 438 13 39 39 0 1 2.000 0.8765 9
## 439 13 13 17 1 1 2.875 0.8765 9
## 440 15 37 39 1 1 2.500 0.9248 11
## 441 10 21 25 1 1 4.375 0.2290 6
## 442 25 25 30 1 1 2.500 0.6587 21
## 443 30 38 38 0 1 2.375 0.6587 26
## 444 8 22 27 1 1 3.875 0.2290 5
## 445 8 17 23 1 1 5.625 0.9378 5
## 446 9 38 38 0 1 3.375 0.2290 6
## 447 23 38 38 0 1 2.875 0.9378 20
## 448 12 22 27 1 1 3.000 0.2290 9
## 449 13 36 36 0 1 2.500 0.2290 10
## 450 6 29 32 1 1 4.000 0.2290 3
## 451 10 10 15 1 1 2.750 0.2290 7
## 452 10 15 21 1 1 4.250 0.2290 7
## 453 30 38 38 0 1 2.375 0.6587 27
## 454 20 38 38 0 1 5.875 0.9248 17
## 455 10 37 37 0 1 2.875 0.9197 7
## 456 13 38 38 0 1 2.750 0.6607 10
## 457 10 21 25 1 1 4.750 0.2290 7
## 458 13 36 36 0 1 1.250 0.6607 10
## 459 10 14 20 1 1 3.000 0.9197 7
## 460 30 38 38 0 1 2.125 0.6587 27
## 461 16 38 38 0 1 3.125 0.6607 13
## 462 17 22 27 1 1 4.000 0.6607 14
## 463 20 35 35 0 1 1.750 0.9378 17
## 464 10 10 14 1 1 3.750 0.9197 8
## 465 9 9 13 1 1 5.750 0.9197 7
## 466 8 12 17 1 1 4.250 0.9378 6
## 467 7 30 35 1 1 2.750 0.2290 5
## 468 7 17 22 1 1 4.500 0.2290 5
## 469 10 15 21 1 1 3.000 0.2290 8
## 470 11 26 31 1 1 5.750 0.2290 9
## 471 11 37 37 0 1 3.375 0.2290 9
## 472 30 30 37 1 1 4.125 0.6587 28
## 473 14 37 37 0 1 4.000 0.9248 12
## 474 14 30 37 1 1 3.125 0.9248 12
## 475 11 31 36 1 1 3.250 0.2290 9
## 476 11 26 31 1 1 2.500 0.2290 9
## 477 10 10 14 1 1 3.750 0.9197 8
## 478 10 37 37 0 1 3.375 0.9197 8
## 479 5 20 24 1 1 3.250 0.2290 3
## 480 10 36 36 0 1 2.750 0.9197 8
## 481 11 15 21 1 1 4.000 0.2290 9
## 482 10 14 20 1 1 2.125 0.9197 8
## 483 6 6 11 1 1 2.625 0.2290 4
## 484 9 36 36 0 1 1.750 0.9197 8
## 485 24 24 29 1 1 3.625 0.9671 23
## 486 11 21 24 1 1 3.750 0.8765 10
## 487 28 34 34 0 1 3.625 0.9671 27
## 488 9 36 36 0 1 4.725 0.9197 8
## 489 10 14 20 1 1 4.000 0.9197 9
## 490 9 25 25 0 1 5.750 0.9197 8
## 491 11 35 35 0 1 3.625 0.2290 10
## 492 10 10 15 1 1 4.875 0.2290 9
## 493 10 33 33 0 1 4.750 0.2290 9
## 494 10 35 35 0 1 5.875 0.2290 9
## 495 10 33 33 0 1 4.500 0.2290 9
## 496 10 36 36 0 1 5.375 0.2290 9
## 497 7 16 21 1 1 4.250 0.2290 6
## 498 6 35 35 0 1 3.750 0.2290 5
## 499 6 36 36 0 1 4.250 0.2290 5
## 500 23 32 35 1 1 2.375 0.6587 23
## 501 10 10 15 1 1 3.375 0.2290 10
## 502 23 27 32 1 1 2.000 0.6587 23
## 503 1 35 35 0 1 4.500 0.9616 1
## 504 4 9 14 1 1 3.875 0.9378 4
## 505 24 35 35 0 1 2.375 0.9671 24
## 506 9 9 13 1 1 6.000 0.9197 9
## 507 8 23 28 1 1 3.125 0.2290 8
## 508 23 23 28 1 1 3.125 0.9378 23
## 509 7 34 34 0 1 3.375 0.2290 7
## 510 8 22 27 1 1 3.750 0.2290 9
## 511 9 13 20 1 1 2.375 0.9197 10
## 512 16 34 34 0 1 3.250 0.6607 17
## 513 10 14 21 1 1 3.625 0.9197 11
## 514 6 20 25 1 1 3.875 0.2290 7
## 515 26 34 34 0 1 2.500 0.9671 27
## 516 23 23 27 1 1 3.500 0.6587 24
## 517 8 8 13 1 1 3.375 0.2290 9
## 518 7 34 34 0 1 3.625 0.2290 8
## 519 30 34 34 0 1 1.750 0.6587 31
## 520 8 12 17 1 1 5.625 0.9197 9
## 521 3 26 30 1 1 2.750 0.9378 4
## 522 10 27 27 0 1 3.375 0.9197 12
## 523 3 13 17 1 1 3.750 0.9378 5
## 524 8 13 17 1 1 4.375 0.2290 10
## 525 2 7 12 1 1 1.625 0.9378 4
## 526 4 9 14 1 1 3.875 0.9378 6
## 527 8 23 29 1 1 5.000 0.9197 10
## 528 7 12 17 1 1 5.375 0.2290 9
## 529 1 31 33 1 1 3.375 0.9616 3
## 530 7 17 22 1 1 0.875 0.2290 9
## 531 14 33 33 0 1 3.125 0.8765 16
## 532 6 11 15 1 1 3.125 0.2290 8
## 533 1 15 21 1 1 0.875 0.9616 3
## 534 1 11 15 1 1 2.750 0.9616 3
## 535 2 2 7 1 1 1.875 0.9616 4
## 536 7 12 12 0 1 3.000 0.2290 10
## 537 17 32 32 0 1 5.875 0.9248 20
## 538 7 7 12 1 1 2.750 0.2290 10
## 539 30 31 31 0 1 1.875 0.6587 33
## 540 2 7 12 1 1 2.750 0.9616 5
## 541 14 32 32 0 1 3.750 0.9248 17
## 542 23 27 32 1 1 3.375 0.6587 26
## 543 8 22 27 1 1 4.000 0.2290 11
## 544 10 30 30 0 1 4.125 0.9197 14
## 545 3 31 31 0 1 4.375 0.9616 7
## 546 23 29 29 0 1 2.625 0.9378 27
## 547 4 30 31 1 1 2.375 0.9378 8
## 548 7 12 17 1 1 8.000 0.2290 11
## 549 10 15 21 1 1 4.500 0.2290 14
## 550 12 27 30 1 1 2.000 0.2290 17
## 551 15 20 24 1 1 3.000 0.9248 20
## 552 21 30 30 0 1 3.125 0.9248 26
## 553 13 30 30 0 1 3.375 0.8765 18
## 554 4 19 23 1 1 4.125 0.2290 9
## 555 14 30 30 0 1 5.250 0.9248 19
## 556 21 30 30 0 1 4.250 0.9248 26
## 557 4 30 30 0 1 2.000 0.9378 9
## 558 10 14 20 1 1 2.250 0.9197 16
## 559 4 9 14 1 1 1.625 0.9378 10
## 560 26 29 29 0 1 2.500 0.9671 32
## 561 10 15 21 1 1 4.250 0.2290 16
## 562 15 20 25 1 1 4.625 0.6607 21
## 563 13 13 17 1 1 2.250 0.8765 20
## 564 16 26 26 0 1 3.250 0.6607 25
## 565 16 16 21 1 1 4.000 0.6607 25
## AgeDay1 Habitat
## 1 -59 R
## 2 -57 P
## 3 -56 P
## 4 -56 N
## 5 -56 P
## 6 -55 P
## 7 -54 P
## 8 -54 N
## 9 -53 P
## 10 -53 N
## 11 -52 P
## 12 -52 P
## 13 -51 P
## 14 -51 N
## 15 -51 N
## 16 -51 P
## 17 -51 P
## 18 -51 W
## 19 -51 N
## 20 -50 P
## 21 -50 N
## 22 -49 P
## 23 -48 N
## 24 -48 N
## 25 -48 R
## 26 -47 P
## 27 -47 N
## 28 -47 R
## 29 -47 R
## 30 -47 P
## 31 -47 N
## 32 -47 N
## 33 -46 P
## 34 -46 P
## 35 -46 P
## 36 -46 N
## 37 -46 P
## 38 -45 N
## 39 -45 P
## 40 -45 N
## 41 -45 P
## 42 -45 N
## 43 -45 R
## 44 -45 P
## 45 -45 N
## 46 -44 N
## 47 -44 N
## 48 -44 W
## 49 -44 P
## 50 -43 R
## 51 -43 N
## 52 -43 P
## 53 -43 P
## 54 -43 P
## 55 -43 P
## 56 -43 P
## 57 -42 P
## 58 -42 P
## 59 -42 P
## 60 -42 W
## 61 -41 N
## 62 -41 P
## 63 -41 N
## 64 -40 P
## 65 -40 N
## 66 -39 N
## 67 -39 P
## 68 -39 P
## 69 -39 P
## 70 -39 P
## 71 -39 N
## 72 -39 P
## 73 -39 W
## 74 -38 P
## 75 -38 P
## 76 -38 P
## 77 -38 P
## 78 -38 P
## 79 -37 P
## 80 -37 N
## 81 -37 R
## 82 -37 P
## 83 -37 P
## 84 -37 P
## 85 -37 R
## 86 -37 P
## 87 -36 P
## 88 -36 N
## 89 -36 P
## 90 -36 P
## 91 -36 R
## 92 -36 P
## 93 -36 P
## 94 -36 R
## 95 -36 P
## 96 -36 P
## 97 -35 P
## 98 -35 P
## 99 -35 W
## 100 -35 R
## 101 -35 W
## 102 -35 N
## 103 -35 R
## 104 -35 P
## 105 -35 N
## 106 -34 P
## 107 -34 P
## 108 -34 P
## 109 -34 N
## 110 -34 N
## 111 -34 P
## 112 -34 W
## 113 -33 N
## 114 -33 P
## 115 -33 P
## 116 -33 P
## 117 -33 P
## 118 -33 P
## 119 -33 P
## 120 -32 W
## 121 -32 P
## 122 -32 P
## 123 -32 N
## 124 -32 P
## 125 -32 P
## 126 -32 P
## 127 -32 N
## 128 -31 R
## 129 -31 N
## 130 -31 N
## 131 -31 N
## 132 -31 P
## 133 -31 P
## 134 -31 P
## 135 -31 P
## 136 -31 R
## 137 -30 N
## 138 -30 P
## 139 -30 P
## 140 -30 P
## 141 -30 P
## 142 -30 P
## 143 -30 P
## 144 -30 P
## 145 -30 R
## 146 -30 P
## 147 -29 P
## 148 -29 P
## 149 -29 P
## 150 -29 N
## 151 -29 P
## 152 -29 P
## 153 -29 R
## 154 -29 P
## 155 -29 N
## 156 -29 R
## 157 -29 P
## 158 -29 P
## 159 -29 N
## 160 -28 P
## 161 -28 P
## 162 -28 P
## 163 -28 P
## 164 -28 W
## 165 -28 P
## 166 -28 N
## 167 -28 N
## 168 -28 P
## 169 -28 N
## 170 -27 N
## 171 -27 N
## 172 -27 P
## 173 -27 P
## 174 -27 P
## 175 -26 P
## 176 -26 P
## 177 -26 W
## 178 -26 P
## 179 -26 P
## 180 -26 P
## 181 -26 N
## 182 -26 P
## 183 -26 P
## 184 -26 N
## 185 -26 N
## 186 -25 P
## 187 -25 P
## 188 -25 N
## 189 -25 P
## 190 -25 P
## 191 -25 N
## 192 -25 P
## 193 -25 P
## 194 -25 N
## 195 -25 N
## 196 -25 P
## 197 -24 N
## 198 -24 P
## 199 -24 P
## 200 -24 P
## 201 -24 P
## 202 -24 P
## 203 -24 N
## 204 -24 P
## 205 -24 P
## 206 -24 P
## 207 -24 P
## 208 -23 P
## 209 -23 P
## 210 -23 P
## 211 -23 P
## 212 -23 N
## 213 -23 P
## 214 -23 R
## 215 -23 P
## 216 -23 N
## 217 -23 N
## 218 -23 N
## 219 -23 P
## 220 -23 P
## 221 -22 N
## 222 -22 P
## 223 -22 N
## 224 -22 P
## 225 -22 P
## 226 -22 P
## 227 -22 P
## 228 -22 P
## 229 -22 N
## 230 -22 N
## 231 -21 P
## 232 -21 P
## 233 -21 P
## 234 -21 P
## 235 -21 P
## 236 -21 P
## 237 -20 P
## 238 -20 P
## 239 -20 P
## 240 -20 N
## 241 -20 P
## 242 -20 N
## 243 -20 P
## 244 -20 P
## 245 -20 R
## 246 -19 N
## 247 -19 N
## 248 -19 N
## 249 -19 P
## 250 -19 P
## 251 -19 N
## 252 -19 P
## 253 -18 P
## 254 -18 P
## 255 -18 P
## 256 -18 P
## 257 -18 P
## 258 -18 N
## 259 -18 P
## 260 -18 P
## 261 -18 W
## 262 -18 N
## 263 -18 N
## 264 -18 R
## 265 -18 P
## 266 -17 P
## 267 -17 P
## 268 -17 P
## 269 -17 P
## 270 -17 P
## 271 -17 P
## 272 -17 P
## 273 -17 R
## 274 -17 N
## 275 -17 P
## 276 -17 P
## 277 -17 P
## 278 -16 N
## 279 -16 N
## 280 -16 P
## 281 -16 W
## 282 -16 N
## 283 -15 N
## 284 -15 P
## 285 -15 P
## 286 -15 N
## 287 -15 N
## 288 -15 N
## 289 -14 N
## 290 -14 N
## 291 -14 P
## 292 -14 P
## 293 -14 P
## 294 -14 N
## 295 -14 W
## 296 -14 N
## 297 -14 N
## 298 -14 P
## 299 -14 P
## 300 -14 N
## 301 -13 P
## 302 -13 N
## 303 -13 N
## 304 -13 P
## 305 -13 P
## 306 -13 N
## 307 -13 P
## 308 -13 P
## 309 -13 R
## 310 -13 P
## 311 -13 P
## 312 -13 N
## 313 -13 P
## 314 -12 N
## 315 -12 P
## 316 -12 P
## 317 -12 P
## 318 -12 P
## 319 -12 N
## 320 -12 N
## 321 -12 P
## 322 -12 N
## 323 -12 P
## 324 -11 P
## 325 -11 W
## 326 -11 N
## 327 -11 N
## 328 -11 N
## 329 -11 P
## 330 -11 R
## 331 -11 P
## 332 -11 P
## 333 -11 N
## 334 -11 W
## 335 -10 R
## 336 -10 P
## 337 -10 N
## 338 -10 W
## 339 -10 R
## 340 -10 P
## 341 -10 N
## 342 -10 N
## 343 -10 P
## 344 -10 P
## 345 -10 P
## 346 -10 P
## 347 -10 P
## 348 -10 P
## 349 -10 R
## 350 -10 P
## 351 -9 N
## 352 -9 P
## 353 -9 P
## 354 -9 P
## 355 -9 R
## 356 -9 P
## 357 -9 W
## 358 -8 R
## 359 -8 P
## 360 -8 N
## 361 -8 P
## 362 -8 N
## 363 -8 P
## 364 -8 N
## 365 -8 N
## 366 -8 P
## 367 -7 P
## 368 -7 P
## 369 -7 P
## 370 -7 P
## 371 -7 R
## 372 -7 P
## 373 -7 W
## 374 -7 P
## 375 -7 P
## 376 -6 P
## 377 -6 N
## 378 -6 N
## 379 -6 N
## 380 -6 N
## 381 -6 P
## 382 -6 W
## 383 -6 R
## 384 -6 P
## 385 -6 P
## 386 -6 P
## 387 -6 N
## 388 -5 N
## 389 -5 W
## 390 -5 N
## 391 -5 P
## 392 -5 N
## 393 -5 N
## 394 -5 N
## 395 -5 N
## 396 -5 P
## 397 -4 R
## 398 -4 N
## 399 -4 N
## 400 -4 P
## 401 -4 N
## 402 -4 N
## 403 -4 N
## 404 -4 N
## 405 -4 P
## 406 -4 P
## 407 -4 P
## 408 -4 N
## 409 -4 P
## 410 -4 N
## 411 -4 P
## 412 -4 R
## 413 -4 R
## 414 -4 R
## 415 -4 N
## 416 -4 P
## 417 -4 P
## 418 -3 P
## 419 -3 P
## 420 -3 P
## 421 -3 P
## 422 -3 W
## 423 -3 P
## 424 -3 P
## 425 -3 W
## 426 -3 N
## 427 -3 W
## 428 -3 P
## 429 -3 N
## 430 -3 N
## 431 -3 W
## 432 -3 N
## 433 -3 P
## 434 -3 P
## 435 -3 N
## 436 -3 N
## 437 -3 P
## 438 -3 P
## 439 -3 P
## 440 -3 P
## 441 -3 P
## 442 -3 N
## 443 -3 P
## 444 -2 P
## 445 -2 N
## 446 -2 N
## 447 -2 P
## 448 -2 W
## 449 -2 R
## 450 -2 N
## 451 -2 P
## 452 -2 W
## 453 -2 R
## 454 -2 N
## 455 -2 P
## 456 -2 P
## 457 -2 P
## 458 -2 P
## 459 -2 P
## 460 -2 P
## 461 -2 P
## 462 -2 N
## 463 -2 N
## 464 -1 P
## 465 -1 N
## 466 -1 N
## 467 -1 P
## 468 -1 P
## 469 -1 W
## 470 -1 W
## 471 -1 R
## 472 -1 P
## 473 -1 N
## 474 -1 N
## 475 -1 N
## 476 -1 N
## 477 -1 P
## 478 -1 P
## 479 -1 N
## 480 -1 P
## 481 -1 W
## 482 -1 P
## 483 -1 W
## 484 0 N
## 485 0 N
## 486 0 P
## 487 0 P
## 488 0 N
## 489 0 P
## 490 0 P
## 491 0 P
## 492 0 P
## 493 0 W
## 494 0 P
## 495 0 P
## 496 0 P
## 497 0 P
## 498 0 P
## 499 0 N
## 500 1 P
## 501 1 P
## 502 1 P
## 503 1 P
## 504 1 N
## 505 1 W
## 506 1 P
## 507 1 N
## 508 1 P
## 509 1 P
## 510 2 P
## 511 2 N
## 512 2 P
## 513 2 P
## 514 2 W
## 515 2 P
## 516 2 P
## 517 2 P
## 518 2 P
## 519 2 P
## 520 2 N
## 521 2 P
## 522 3 R
## 523 3 P
## 524 3 P
## 525 3 N
## 526 3 N
## 527 3 N
## 528 3 P
## 529 3 P
## 530 3 P
## 531 3 N
## 532 3 N
## 533 3 P
## 534 3 P
## 535 3 R
## 536 4 P
## 537 4 N
## 538 4 W
## 539 4 P
## 540 4 N
## 541 4 N
## 542 4 P
## 543 4 P
## 544 5 P
## 545 5 P
## 546 5 P
## 547 5 N
## 548 5 P
## 549 5 P
## 550 6 R
## 551 6 P
## 552 6 N
## 553 6 P
## 554 6 P
## 555 6 W
## 556 6 N
## 557 6 N
## 558 7 P
## 559 7 N
## 560 7 P
## 561 7 W
## 562 7 N
## 563 8 P
## 564 10 P
## 565 10 P
##
## $model
## [1] "Nest"
##
## $mixtures
## [1] 1
##
## $freq
## group1
## 1 1
## 2 1
## 3 1
## 4 1
## 5 1
## 6 1
## 7 1
## 8 1
## 9 1
## 10 1
## 11 1
## 12 1
## 13 1
## 14 1
## 15 1
## 16 1
## 17 1
## 18 1
## 19 1
## 20 1
## 21 1
## 22 1
## 23 1
## 24 1
## 25 1
## 26 1
## 27 1
## 28 1
## 29 1
## 30 1
## 31 1
## 32 1
## 33 1
## 34 1
## 35 1
## 36 1
## 37 1
## 38 1
## 39 1
## 40 1
## 41 1
## 42 1
## 43 1
## 44 1
## 45 1
## 46 1
## 47 1
## 48 1
## 49 1
## 50 1
## 51 1
## 52 1
## 53 1
## 54 1
## 55 1
## 56 1
## 57 1
## 58 1
## 59 1
## 60 1
## 61 1
## 62 1
## 63 1
## 64 1
## 65 1
## 66 1
## 67 1
## 68 1
## 69 1
## 70 1
## 71 1
## 72 1
## 73 1
## 74 1
## 75 1
## 76 1
## 77 1
## 78 1
## 79 1
## 80 1
## 81 1
## 82 1
## 83 1
## 84 1
## 85 1
## 86 1
## 87 1
## 88 1
## 89 1
## 90 1
## 91 1
## 92 1
## 93 1
## 94 1
## 95 1
## 96 1
## 97 1
## 98 1
## 99 1
## 100 1
## 101 1
## 102 1
## 103 1
## 104 1
## 105 1
## 106 1
## 107 1
## 108 1
## 109 1
## 110 1
## 111 1
## 112 1
## 113 1
## 114 1
## 115 1
## 116 1
## 117 1
## 118 1
## 119 1
## 120 1
## 121 1
## 122 1
## 123 1
## 124 1
## 125 1
## 126 1
## 127 1
## 128 1
## 129 1
## 130 1
## 131 1
## 132 1
## 133 1
## 134 1
## 135 1
## 136 1
## 137 1
## 138 1
## 139 1
## 140 1
## 141 1
## 142 1
## 143 1
## 144 1
## 145 1
## 146 1
## 147 1
## 148 1
## 149 1
## 150 1
## 151 1
## 152 1
## 153 1
## 154 1
## 155 1
## 156 1
## 157 1
## 158 1
## 159 1
## 160 1
## 161 1
## 162 1
## 163 1
## 164 1
## 165 1
## 166 1
## 167 1
## 168 1
## 169 1
## 170 1
## 171 1
## 172 1
## 173 1
## 174 1
## 175 1
## 176 1
## 177 1
## 178 1
## 179 1
## 180 1
## 181 1
## 182 1
## 183 1
## 184 1
## 185 1
## 186 1
## 187 1
## 188 1
## 189 1
## 190 1
## 191 1
## 192 1
## 193 1
## 194 1
## 195 1
## 196 1
## 197 1
## 198 1
## 199 1
## 200 1
## 201 1
## 202 1
## 203 1
## 204 1
## 205 1
## 206 1
## 207 1
## 208 1
## 209 1
## 210 1
## 211 1
## 212 1
## 213 1
## 214 1
## 215 1
## 216 1
## 217 1
## 218 1
## 219 1
## 220 1
## 221 1
## 222 1
## 223 1
## 224 1
## 225 1
## 226 1
## 227 1
## 228 1
## 229 1
## 230 1
## 231 1
## 232 1
## 233 1
## 234 1
## 235 1
## 236 1
## 237 1
## 238 1
## 239 1
## 240 1
## 241 1
## 242 1
## 243 1
## 244 1
## 245 1
## 246 1
## 247 1
## 248 1
## 249 1
## 250 1
## 251 1
## 252 1
## 253 1
## 254 1
## 255 1
## 256 1
## 257 1
## 258 1
## 259 1
## 260 1
## 261 1
## 262 1
## 263 1
## 264 1
## 265 1
## 266 1
## 267 1
## 268 1
## 269 1
## 270 1
## 271 1
## 272 1
## 273 1
## 274 1
## 275 1
## 276 1
## 277 1
## 278 1
## 279 1
## 280 1
## 281 1
## 282 1
## 283 1
## 284 1
## 285 1
## 286 1
## 287 1
## 288 1
## 289 1
## 290 1
## 291 1
## 292 1
## 293 1
## 294 1
## 295 1
## 296 1
## 297 1
## 298 1
## 299 1
## 300 1
## 301 1
## 302 1
## 303 1
## 304 1
## 305 1
## 306 1
## 307 1
## 308 1
## 309 1
## 310 1
## 311 1
## 312 1
## 313 1
## 314 1
## 315 1
## 316 1
## 317 1
## 318 1
## 319 1
## 320 1
## 321 1
## 322 1
## 323 1
## 324 1
## 325 1
## 326 1
## 327 1
## 328 1
## 329 1
## 330 1
## 331 1
## 332 1
## 333 1
## 334 1
## 335 1
## 336 1
## 337 1
## 338 1
## 339 1
## 340 1
## 341 1
## 342 1
## 343 1
## 344 1
## 345 1
## 346 1
## 347 1
## 348 1
## 349 1
## 350 1
## 351 1
## 352 1
## 353 1
## 354 1
## 355 1
## 356 1
## 357 1
## 358 1
## 359 1
## 360 1
## 361 1
## 362 1
## 363 1
## 364 1
## 365 1
## 366 1
## 367 1
## 368 1
## 369 1
## 370 1
## 371 1
## 372 1
## 373 1
## 374 1
## 375 1
## 376 1
## 377 1
## 378 1
## 379 1
## 380 1
## 381 1
## 382 1
## 383 1
## 384 1
## 385 1
## 386 1
## 387 1
## 388 1
## 389 1
## 390 1
## 391 1
## 392 1
## 393 1
## 394 1
## 395 1
## 396 1
## 397 1
## 398 1
## 399 1
## 400 1
## 401 1
## 402 1
## 403 1
## 404 1
## 405 1
## 406 1
## 407 1
## 408 1
## 409 1
## 410 1
## 411 1
## 412 1
## 413 1
## 414 1
## 415 1
## 416 1
## 417 1
## 418 1
## 419 1
## 420 1
## 421 1
## 422 1
## 423 1
## 424 1
## 425 1
## 426 1
## 427 1
## 428 1
## 429 1
## 430 1
## 431 1
## 432 1
## 433 1
## 434 1
## 435 1
## 436 1
## 437 1
## 438 1
## 439 1
## 440 1
## 441 1
## 442 1
## 443 1
## 444 1
## 445 1
## 446 1
## 447 1
## 448 1
## 449 1
## 450 1
## 451 1
## 452 1
## 453 1
## 454 1
## 455 1
## 456 1
## 457 1
## 458 1
## 459 1
## 460 1
## 461 1
## 462 1
## 463 1
## 464 1
## 465 1
## 466 1
## 467 1
## 468 1
## 469 1
## 470 1
## 471 1
## 472 1
## 473 1
## 474 1
## 475 1
## 476 1
## 477 1
## 478 1
## 479 1
## 480 1
## 481 1
## 482 1
## 483 1
## 484 1
## 485 1
## 486 1
## 487 1
## 488 1
## 489 1
## 490 1
## 491 1
## 492 1
## 493 1
## 494 1
## 495 1
## 496 1
## 497 1
## 498 1
## 499 1
## 500 1
## 501 1
## 502 1
## 503 1
## 504 1
## 505 1
## 506 1
## 507 1
## 508 1
## 509 1
## 510 1
## 511 1
## 512 1
## 513 1
## 514 1
## 515 1
## 516 1
## 517 1
## 518 1
## 519 1
## 520 1
## 521 1
## 522 1
## 523 1
## 524 1
## 525 1
## 526 1
## 527 1
## 528 1
## 529 1
## 530 1
## 531 1
## 532 1
## 533 1
## 534 1
## 535 1
## 536 1
## 537 1
## 538 1
## 539 1
## 540 1
## 541 1
## 542 1
## 543 1
## 544 1
## 545 1
## 546 1
## 547 1
## 548 1
## 549 1
## 550 1
## 551 1
## 552 1
## 553 1
## 554 1
## 555 1
## 556 1
## 557 1
## 558 1
## 559 1
## 560 1
## 561 1
## 562 1
## 563 1
## 564 1
## 565 1
##
## $nocc
## [1] 90
##
## $nocc.secondary
## NULL
##
## $time.intervals
## [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [36] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [71] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##
## $begin.time
## [1] 1
##
## $age.unit
## [1] 1
##
## $initial.ages
## [1] 0
##
## $group.covariates
## NULL
##
## $nstrata
## [1] 1
##
## $strata.labels
## [1] ""
##
## $counts
## NULL
##
## $reverse
## [1] FALSE
##
## $areas
## NULL
##
## $events
## NULL
# 2. Examine and/or modify the ddl. (Not done here)
mall.ddl <- make.design.data(mall.proc)
str(mall.ddl)
## List of 2
## $ S :'data.frame': 89 obs. of 7 variables:
## ..$ par.index : int [1:89] 1 2 3 4 5 6 7 8 9 10 ...
## ..$ model.index: num [1:89] 1 2 3 4 5 6 7 8 9 10 ...
## ..$ group : Factor w/ 1 level "1": 1 1 1 1 1 1 1 1 1 1 ...
## ..$ age : Factor w/ 89 levels "0","1","2","3",..: 1 2 3 4 5 6 7 8 9 10 ...
## ..$ time : Factor w/ 89 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...
## ..$ Age : num [1:89] 0 1 2 3 4 5 6 7 8 9 ...
## ..$ Time : num [1:89] 0 1 2 3 4 5 6 7 8 9 ...
## $ pimtypes:List of 1
## ..$ S:List of 1
## .. ..$ pim.type: chr "all"
mall.ddl
## $S
## par.index model.index group age time Age Time
## 1 1 1 1 0 1 0 0
## 2 2 2 1 1 2 1 1
## 3 3 3 1 2 3 2 2
## 4 4 4 1 3 4 3 3
## 5 5 5 1 4 5 4 4
## 6 6 6 1 5 6 5 5
## 7 7 7 1 6 7 6 6
## 8 8 8 1 7 8 7 7
## 9 9 9 1 8 9 8 8
## 10 10 10 1 9 10 9 9
## 11 11 11 1 10 11 10 10
## 12 12 12 1 11 12 11 11
## 13 13 13 1 12 13 12 12
## 14 14 14 1 13 14 13 13
## 15 15 15 1 14 15 14 14
## 16 16 16 1 15 16 15 15
## 17 17 17 1 16 17 16 16
## 18 18 18 1 17 18 17 17
## 19 19 19 1 18 19 18 18
## 20 20 20 1 19 20 19 19
## 21 21 21 1 20 21 20 20
## 22 22 22 1 21 22 21 21
## 23 23 23 1 22 23 22 22
## 24 24 24 1 23 24 23 23
## 25 25 25 1 24 25 24 24
## 26 26 26 1 25 26 25 25
## 27 27 27 1 26 27 26 26
## 28 28 28 1 27 28 27 27
## 29 29 29 1 28 29 28 28
## 30 30 30 1 29 30 29 29
## 31 31 31 1 30 31 30 30
## 32 32 32 1 31 32 31 31
## 33 33 33 1 32 33 32 32
## 34 34 34 1 33 34 33 33
## 35 35 35 1 34 35 34 34
## 36 36 36 1 35 36 35 35
## 37 37 37 1 36 37 36 36
## 38 38 38 1 37 38 37 37
## 39 39 39 1 38 39 38 38
## 40 40 40 1 39 40 39 39
## 41 41 41 1 40 41 40 40
## 42 42 42 1 41 42 41 41
## 43 43 43 1 42 43 42 42
## 44 44 44 1 43 44 43 43
## 45 45 45 1 44 45 44 44
## 46 46 46 1 45 46 45 45
## 47 47 47 1 46 47 46 46
## 48 48 48 1 47 48 47 47
## 49 49 49 1 48 49 48 48
## 50 50 50 1 49 50 49 49
## 51 51 51 1 50 51 50 50
## 52 52 52 1 51 52 51 51
## 53 53 53 1 52 53 52 52
## 54 54 54 1 53 54 53 53
## 55 55 55 1 54 55 54 54
## 56 56 56 1 55 56 55 55
## 57 57 57 1 56 57 56 56
## 58 58 58 1 57 58 57 57
## 59 59 59 1 58 59 58 58
## 60 60 60 1 59 60 59 59
## 61 61 61 1 60 61 60 60
## 62 62 62 1 61 62 61 61
## 63 63 63 1 62 63 62 62
## 64 64 64 1 63 64 63 63
## 65 65 65 1 64 65 64 64
## 66 66 66 1 65 66 65 65
## 67 67 67 1 66 67 66 66
## 68 68 68 1 67 68 67 67
## 69 69 69 1 68 69 68 68
## 70 70 70 1 69 70 69 69
## 71 71 71 1 70 71 70 70
## 72 72 72 1 71 72 71 71
## 73 73 73 1 72 73 72 72
## 74 74 74 1 73 74 73 73
## 75 75 75 1 74 75 74 74
## 76 76 76 1 75 76 75 75
## 77 77 77 1 76 77 76 76
## 78 78 78 1 77 78 77 77
## 79 79 79 1 78 79 78 78
## 80 80 80 1 79 80 79 79
## 81 81 81 1 80 81 80 80
## 82 82 82 1 81 82 81 81
## 83 83 83 1 82 83 82 82
## 84 84 84 1 83 84 83 83
## 85 85 85 1 84 85 84 84
## 86 86 86 1 85 86 85 85
## 87 87 87 1 86 87 86 86
## 88 88 88 1 87 88 87 87
## 89 89 89 1 88 89 88 88
##
## $pimtypes
## $pimtypes$S
## $pimtypes$S$pim.type
## [1] "all"
# 3. Fit a particular model
# This is a model with S varying by robel height
mod.rob <- RMark::mark(mall.proc, ddl=mall.ddl,
model="Nest",
model.parameters=list(
S =list(formula=~Robel)
)
)
##
## Output summary for Nest model
## Name : S(~Robel)
##
## Npar : 2
## -2lnL: 1566.773
## AICc : 1570.775
##
## Beta
## estimate se lcl ucl
## S:(Intercept) 2.9088384 0.1744305 2.5669545 3.2507222
## S:Robel 0.0272703 0.0466152 -0.0640954 0.1186361
##
##
## Real Parameter S
## 1 2 3 4 5 6 7 8
## 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906
## 9 10 11 12 13 14 15 16
## 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906
## 17 18 19 20 21 22 23 24
## 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906
## 25 26 27 28 29 30 31 32
## 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906
## 33 34 35 36 37 38 39 40
## 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906
## 41 42 43 44 45 46 47 48
## 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906
## 49 50 51 52 53 54 55 56
## 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906
## 57 58 59 60 61 62 63 64
## 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906
## 65 66 67 68 69 70 71 72
## 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906
## 73 74 75 76 77 78 79 80
## 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906
## 81 82 83 84 85 86 87 88
## 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906
## 89
## 0.952906
summary(mod.rob)
## Output summary for Nest model
## Name : S(~Robel)
##
## Npar : 2
## -2lnL: 1566.773
## AICc : 1570.775
##
## Beta
## estimate se lcl ucl
## S:(Intercept) 2.9088384 0.1744305 2.5669545 3.2507222
## S:Robel 0.0272703 0.0466152 -0.0640954 0.1186361
##
##
## Real Parameter S
## 1 2 3 4 5 6 7 8
## 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906
## 9 10 11 12 13 14 15 16
## 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906
## 17 18 19 20 21 22 23 24
## 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906
## 25 26 27 28 29 30 31 32
## 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906
## 33 34 35 36 37 38 39 40
## 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906
## 41 42 43 44 45 46 47 48
## 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906
## 49 50 51 52 53 54 55 56
## 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906
## 57 58 59 60 61 62 63 64
## 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906
## 65 66 67 68 69 70 71 72
## 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906
## 73 74 75 76 77 78 79 80
## 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906
## 81 82 83 84 85 86 87 88
## 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906 0.952906
## 89
## 0.952906
# estimates of DSR are for average value of Robel
# Look the objects returned in more details
names(mod.rob)
## [1] "data" "model" "title"
## [4] "model.name" "links" "mixtures"
## [7] "call" "parameters" "time.intervals"
## [10] "number.of.groups" "group.labels" "nocc"
## [13] "begin.time" "covariates" "fixed"
## [16] "design.matrix" "pims" "design.data"
## [19] "strata.labels" "mlogit.list" "profile.int"
## [22] "simplify" "model.parameters" "results"
## [25] "output"
names(mod.rob$results)
## [1] "lnl" "deviance" "deviance.df"
## [4] "npar" "n" "AICc"
## [7] "beta" "real" "beta.vcv"
## [10] "derived" "derived.vcv" "covariate.values"
## [13] "singular" "real.vcv"
# look at estimates on beta and original scale
mod.rob$results$beta # on the logit scale
## estimate se lcl ucl
## S:(Intercept) 2.9088384 0.1744305 2.5669545 3.2507222
## S:Robel 0.0272703 0.0466152 -0.0640954 0.1186361
mod.rob$results$real# on the regular 0-1 scale for each habitat
## estimate se lcl ucl fixed note
## S g1 a0 t1 0.952906 0.0025942 0.9475523 0.9577375
# derived variabldes is the nest survival probability over the (nocc) days
names(mod.rob$results$derived)
## [1] "S Overall Survival"
mod.rob$results$derived$"S Overall Survival"
## estimate se lcl ucl
## 1 0.01366009 0.003309805 0.008484423 0.0219232
# we need to use covariate predictions to get estimated DSR at different Robel heights
head(get.real(mod.rob, "S", se=TRUE))
## all.diff.index par.index estimate se lcl ucl
## S g1 a0 t1 1 1 0.952906 0.0025942 0.9475523 0.9577375
## S g1 a1 t2 2 1 0.952906 0.0025942 0.9475523 0.9577375
## S g1 a2 t3 3 1 0.952906 0.0025942 0.9475523 0.9577375
## S g1 a3 t4 4 1 0.952906 0.0025942 0.9475523 0.9577375
## S g1 a4 t5 5 1 0.952906 0.0025942 0.9475523 0.9577375
## S g1 a5 t6 6 1 0.952906 0.0025942 0.9475523 0.9577375
## fixed note group age time Age Time
## S g1 a0 t1 1 0 1 0 0
## S g1 a1 t2 1 1 2 1 1
## S g1 a2 t3 1 2 3 2 2
## S g1 a3 t4 1 3 4 3 3
## S g1 a4 t5 1 4 5 4 4
## S g1 a5 t6 1 5 6 5 5
# because the DSR depends on the Robel value and NOT the day, we can predict at day =1
# corresonding to index.all.diff=1
range(malldata$Robel)
## [1] 0.625 9.250
pred.data <- data.frame(Robel=seq(min(malldata$Robel), max(malldata$Robel), length.out=50),
index=1)
head(pred.data)
## Robel index
## 1 0.6250000 1
## 2 0.8010204 1
## 3 0.9770408 1
## 4 1.1530612 1
## 5 1.3290816 1
## 6 1.5051020 1
# we plot the results
# because the DSR is the same for all days, we use the time=1 values
plotdata <- covariate.predictions(mod.rob, data=pred.data)$estimates
head(plotdata)
## vcv.index model.index par.index Robel index estimate se
## 1 1 1 1 0.6250000 1 0.9491111 0.007112088
## 2 1 1 1 0.8010204 1 0.9493425 0.006720197
## 3 1 1 1 0.9770408 1 0.9495729 0.006335469
## 4 1 1 1 1.1530612 1 0.9498022 0.005958547
## 5 1 1 1 1.3290816 1 0.9500306 0.005590208
## 6 1 1 1 1.5051020 1 0.9502580 0.005231429
## lcl ucl fixed
## 1 0.9332221 0.9613761
## 2 0.9344286 0.9610059
## 3 0.9356051 0.9606383
## 4 0.9367506 0.9602748
## 5 0.9378640 0.9599167
## 6 0.9389436 0.9595660
dsr.rob.plot <- ggplot(data=plotdata, aes(x=Robel, y=estimate))+
ggtitle("DSR by Robel height for mallards")+
geom_line()+
geom_ribbon(aes(ymin=lcl, ymax=ucl),alpha=0.1)+
ylab("DSR (95% ci)")
dsr.rob.plot

ggsave(dsr.rob.plot,
file=file.path("..","..","..","..","MyStuff","Images","mallard-dsr-robel.png"), h=4, w=6, units="in", dpi=300)
# fit a null models
# 3. Fit a particular model
# This is a model with S varying by habitat type
mod.null <- RMark::mark(mall.proc, ddl=mall.ddl,
model="Nest",
model.parameters=list(
S =list(formula=~1)
)
)
##
## Output summary for Nest model
## Name : S(~1)
##
## Npar : 1
## -2lnL: 1567.116
## AICc : 1569.117
##
## Beta
## estimate se lcl ucl
## S:(Intercept) 3.005653 0.0576808 2.892598 3.118707
##
##
## Real Parameter S
## 1 2 3 4 5 6 7
## 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288
## 8 9 10 11 12 13 14
## 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288
## 15 16 17 18 19 20 21
## 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288
## 22 23 24 25 26 27 28
## 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288
## 29 30 31 32 33 34 35
## 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288
## 36 37 38 39 40 41 42
## 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288
## 43 44 45 46 47 48 49
## 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288
## 50 51 52 53 54 55 56
## 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288
## 57 58 59 60 61 62 63
## 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288
## 64 65 66 67 68 69 70
## 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288
## 71 72 73 74 75 76 77
## 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288
## 78 79 80 81 82 83 84
## 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288
## 85 86 87 88 89
## 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288
summary(mod.null)
## Output summary for Nest model
## Name : S(~1)
##
## Npar : 1
## -2lnL: 1567.116
## AICc : 1569.117
##
## Beta
## estimate se lcl ucl
## S:(Intercept) 3.005653 0.0576808 2.892598 3.118707
##
##
## Real Parameter S
## 1 2 3 4 5 6 7
## 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288
## 8 9 10 11 12 13 14
## 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288
## 15 16 17 18 19 20 21
## 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288
## 22 23 24 25 26 27 28
## 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288
## 29 30 31 32 33 34 35
## 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288
## 36 37 38 39 40 41 42
## 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288
## 43 44 45 46 47 48 49
## 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288
## 50 51 52 53 54 55 56
## 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288
## 57 58 59 60 61 62 63
## 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288
## 64 65 66 67 68 69 70
## 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288
## 71 72 73 74 75 76 77
## 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288
## 78 79 80 81 82 83 84
## 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288
## 85 86 87 88 89
## 0.9528288 0.9528288 0.9528288 0.9528288 0.9528288
collect.models(type="Nest")
## model npar AICc DeltaAICc weight Deviance
## 1 S(~1) 1 1569.117 0.000000 0.6961759 1567.116
## 2 S(~Robel) 2 1570.775 1.658307 0.3038241 1566.773
cleanup(ask=FALSE)