# Multi Species, Single Season Occupancy analyais

#   Cove MV, Gardner B, Simons TR, O'Connell AF (2018) 
#   Co-occurrence dynamics of endangered Lower Keys marsh rabbits and free-ranging domestic cats: 
#   Prey responses to an exotic predator removal program. 
#   Ecology and Evolution 8(8): 4042-4052. 
#   https://doi.org/10.1002/ece3.3954

# Data obtained from the Dryad data package:
#
#  Cove MV, Gardner B, Simons TR, O'Connell AF (2018) 
#  Data from: Co-occurrence dynamics of endangered Lower Keys marsh rabbits and free-ranging domestic cats: 
#  prey responses to an exotic predator removal program. 
#  Dryad Digital Repository. 
#   https://doi.org/10.5061/dryad.748pd64
#
#  Note that the orginal data on the Dryad repository had incorrect cat numbers for 2013/2014 and 2015 data.
#  I wrote to the author and got the corrected data.

# Briefly: between 2013 and 2015, camera traps were used to survey marsh
# rabbits and free-ranging
# cats at 84 sites in the National Key Deer Refuge, Big Pine
# Key, Florida, USA. We used dynamic occupancy models to determine factors associated
# with marsh rabbit occurrence, colonization, extinction, and the co-occurrence
# of marsh rabbits and cats during a period of predator removal

# ***** Only the first "year" of data (2013/2014) prior to any manipulation of the number of cats **** is used

# 2020-01-07 Code contributed by Carl James Schwarz (cschwarz.stat.sfu.cs@gmail.com)
#  load libraries 

library(readxl)
library(RMark)
## This is RMark 2.2.7
##  Documentation available at http://www.phidot.org/software/mark/rmark/RMarkDocumentation.zip
library(ggplot2)

# Get the Mark additional functions 
source(file.path("..","..","..","..","AdditionalFunctions","RMark.additional.functions.R"))

# get the data read in
# Data for detections should be a data frame with rows corresponding to sites
# and columns to visits.
# The usual 1=detected; 0=not detected; NA=not visited is used.

input.data <- read.csv(file.path("..","..","Cove_etal_Ecology_Evolution_2018_data-original.csv"), 
                       header=TRUE, as.is=TRUE, strip.white=TRUE, na.string=".")
head(input.data)
##    Site   UTM.N    UTM.E X2015.Start.Date X2015.End.Date Rabbits.2013.2014 X
## 1 Fs003 2735114 460522.3          3/28/15        4/12/15                 0 0
## 2 Fs005 2733915 460235.5          3/26/15        4/10/15                 0 0
## 3 Fs006 2733787 460643.2          4/30/15        5/15/15                 0 1
## 4 Fs007 2733456 460429.5          3/27/15        4/11/15                 1 0
## 5 Fs008 2733476 461280.8          4/30/15        5/15/15                 0 1
## 6 Fs009 2733213 460392.6          3/27/15        4/11/15                 0 0
##   X.1 X.2 X.3 X.4 X.5 X.6 X.7 X.8 X.9 X.10 X.11 X.12 X.13 X.14 Rabbits.2015
## 1   0   0   0   0   0   0   0   0   0    0    0    0    0    0            0
## 2   0   0   0   1   0   1   0   0   1    0    0    0    1    0            0
## 3   0   0   0   0   0   0   0   1   0    1    1    1    0    1            0
## 4   0   0   0   0   0   0   0   0   0    0    0    0    0    0            0
## 5   0   0   0   0   0   0   0   0   0    0    0    0    0    0            0
## 6   1   0   0   0   0   0   0   0   0    0    1    0    0    0            0
##   X.15 X.16 X.17 X.18 X.19 X.20 X.21 X.22 X.23 X.24 X.25 X.26 X.27 X.28 X.29
## 1    0    0    0    0    0    0    0    0    0    0    0    0    0    0   NA
## 2    0    1    0    1    1    1    1    0    1    0    1    1    0    1   NA
## 3    0    0    0    1    1    1    0    0    0    1    0    0    1    0   NA
## 4    1    1    1    1    1    1    0    0    0    0    1    0    0    0   NA
## 5    0    0    0    0    0    0    1    0    0    0    0    0    0    0   NA
## 6    0    0    1    0    0    0    1    0    1    1    0    1    0    0   NA
##    X.30 Cats.2013.2014 X.31 X.32 X.33 X.34 X.35 X.36 X.37 X.38 X.39 X.40 X.41
## 1 FS003              0    0    0    0    0    0    0    0    0    0    0    0
## 2 FS005              0    0    0    0    0    0    0    0    0    0    1    0
## 3 FS006              0    0    0    0    0    0    0    0    0    0    0    0
## 4 FS007              0    0    0    0    0    0    0    0    0    0    0    0
## 5 FS008              0    0    0    0    0    0    0    0    0    0    0    0
## 6 FS009              0    0    0    0    0    0    0    0    0    0    0    0
##   X.42 X.43 X.44 X.45 Cats.2015 X.46 X.47 X.48 X.49 X.50 X.51 X.52 X.53 X.54
## 1    0    0    0    0         0    0    0    0    0    0    0    0    0    0
## 2    1    0    0    0         0    0    0    0    0    0    0    0    0    0
## 3    0    0    0    0         0    0    0    0    0    0    0    0    0    0
## 4    0    0    0    0         0    0    0    0    0    0    0    0    0    0
## 5    0    0    0    0         0    0    0    0    0    0    0    0    0    0
## 6    0    0    0    0         0    0    0    1    0    0    0    0    0    0
##   X.55 X.56 X.57 X.58 X.59 X.60 year_2013 dist_cam_z Total.CatCaps_2013_14
## 1    0    0    0    0    0   NA         1       0.86                     0
## 2    0    0    0    0    1   NA         1      -1.49                     1
## 3    0    0    0    0    0   NA         1         NA                     0
## 4    0    0    1    0    0   NA         1      -0.80                     1
## 5    0    0    0    0    0   NA         1         NA                     0
## 6    0    0    0    0    0   NA         1      -0.32                     1
##   CatIndividuals_2013_14 Total.CatCaps_2015 CatIndividuals_2015
## 1                      0                  0                   0
## 2                      1                  1                   1
## 3                      0                  0                   0
## 4                      1                  1                   1
## 5                      0                  0                   0
## 6                      1                  1                   1
##   RabbitPresence_2013_14 HumanTrail Rabbitat Rabbitat_buff HumanTrail.1
## 1                      0          0        1             0            0
## 2                      1          0        1             0            0
## 3                      1          0        1             0            0
## 4                      1          0        1             0            0
## 5                      1          1        1             1            0
## 6                      1          1        0             0            0
##   dist_rd_z dist_dev_z dist_cat2014_z dist_cat2015_z bin_2014cat bin_2015cat
## 1      1.51       1.05           0.51           2.79           0           0
## 2     -0.46      -0.83          -1.60           1.73           1           0
## 3     -0.08       0.12          -0.88           1.21           1           0
## 4      0.71       0.00          -0.75           1.14           1           0
## 5      0.78       2.20           0.34           0.32           0           0
## 6      1.45       1.02          -0.27           0.88           0           0
##   bin_20142015        DESCRIPTION freshwater salt_button upland hectares_z
## 1            0         Buttonwood          0           1      0      -0.74
## 2            1 Freshwater Wetland          1           0      0      -0.78
## 3            1 Freshwater Wetland          1           0      0      -0.78
## 4            1 Freshwater Wetland          1           0      0      -0.78
## 5            0           Pineland          0           0      1       0.51
## 6            0           Pineland          0           0      1       1.84
##   LiDar_z
## 1   -0.35
## 2   -0.88
## 3   -1.13
## 4   -0.84
## 5   -0.32
## 6   -0.07
# OOPs...# compute the difference in individual cats. These are problematic as the values are the same
# in the two sessions
input.data$CatIndividuals_2013_14
##  [1] 0 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 1 2 0 0 0
## [39] 0 0 0 0 1 0 2 1 1 2 1 2 3 2 2 2 1 1 0 1 1 2 0 0 0 2 0 2 1 0 7 0 4 1 1 2 0 2
## [77] 1 0 0 1 0 0 0 2
input.data$CatIndividuals_2015
##  [1] 0 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 1 2 0 0 0
## [39] 0 0 0 0 1 0 2 1 1 2 1 2 3 2 2 2 1 1 0 1 1 2 0 0 0 2 0 2 1 0 7 0 4 1 1 2 0 2
## [77] 1 0 0 1 0 0 0 2
input.data$delta.icats <- input.data$CatIndividuals_2013_14 - input.data$CatIndividuals_2015
input.data$delta.icats
##  [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [39] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [77] 0 0 0 0 0 0 0 0
input.data$Total.CatCaps_2013_14
##  [1]  0  1  0  1  0  1  1  0  0  0  2  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [26]  0  1  0  7  0  0  0  0  1  2  0  0  0  0  0  0  0  1  0  2  1  3  3  1  3
## [51]  4  3  2  5  3  1  0  3  1  2  0  0  0  6  0  7  2  0 16  0 10  1  5 15  0
## [76]  8  1  0  0  1  0  0  0  5
input.data$Total.CatCaps_2015
##  [1]  0  1  0  1  0  1  1  0  0  0  2  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [26]  0  1  0  7  0  0  0  0  1  2  0  0  0  0  0  0  0  1  0  2  1  3  3  1  3
## [51]  4  3  2  5  3  1  0  3  1  2  0  0  0  6  0  7  2  0 16  0 10  1  5 15  0
## [76]  8  1  1  0  1  0  0  0  5
# here is the updated cat data
input.data2 <- read.csv(file.path("..","..","Cove_etal_Ecology_Evolution_2018_data-updated.csv"), 
                       header=TRUE, as.is=TRUE, strip.white=TRUE, na.string=".")
head(input.data2)
##   year_2013 North dist_cam_z Catsyear1 Capturesyear1 Individualsyear1
## 1         1     1  0.8568465         0             0                0
## 2         1     1 -1.4944675         1             2                2
## 3         1     1  0.0000000         0             0                0
## 4         1     1 -0.8029046         0             0                0
## 5         1     1  0.0000000         0             0                0
## 6         1     1 -0.3188105         0             0                0
##   Capturesyear2 Individualsyear2 twoyear_indchange twoyear_capschange
## 1             0                0                 0                  0
## 2             1                1                -1                 -1
## 3             0                0                 0                  0
## 4             1                1                 1                  1
## 5             0                0                 0                  0
## 6             1                1                 1                  1
##   capchange_z RabbitPresence HumanTrail Rabbitat Rabbitat_buff   dist_rd_z
## 1  0.30246914              0          0        1             0  1.50897691
## 2 -0.06063907              1          0        1             0 -0.46101737
## 3  0.30246914              1          0        1             0 -0.07882644
## 4  0.66557734              1          0        1             0  0.70617147
## 5  0.30246914              1          1        1             1  0.78310282
## 6  0.66557734              1          1        0             0  1.44628482
##     dist_dev_z dist_cat2014_z dist_cat2015_z bin_2014cat bin_2015cat
## 1  1.046661022      0.5141839      2.7878397           0           0
## 2 -0.834653866     -1.5959094      1.7330113           1           0
## 3  0.115757425     -0.8770415      1.2084800           1           0
## 4 -0.000375798     -0.7457188      1.1412177           1           0
## 5  2.200931956      0.3372080      0.3171738           0           0
## 6  1.020459541     -0.2725414      0.8839006           0           0
##   bin_20142015        DESCRIPTION freshwater salt_button upland hectares_z
## 1            0         Buttonwood          0           1      0 -0.7414135
## 2            1 Freshwater Wetland          1           0      0 -0.7808261
## 3            1 Freshwater Wetland          1           0      0 -0.7808261
## 4            1 Freshwater Wetland          1           0      0 -0.7808261
## 5            0           Pineland          0           0      1  0.5121787
## 6            0           Pineland          0           0      1  1.8352219
##       LiDar_z Sum_Cats Min_Cats Max_Cats Sum_Captur Min_Captur Max_Captur
## 1 -0.35022907        0        0        0          0          0          0
## 2 -0.88143611        2        1        1          6          2          4
## 3 -1.12883639        2        0        1          8          0          4
## 4 -0.84022781        0        0        0          0          0          0
## 5 -0.31962944        0        0        0          0          0          0
## 6 -0.06844092        0        0        0          0          0          0
##   Sum_Indivi
## 1          0
## 2          4
## 3          5
## 4          0
## 5          0
## 6          0
input.data2 <- input.data2[,c("Individualsyear1","Individualsyear2","twoyear_indchange","RabbitPresence")]
input.data <- cbind(input.data, input.data2)  # the second files doesn't have site ids but appears to be sorted in correct order

input.data$CatIndividuals_2013_14 <- NULL
input.data$Total.CatCaps_2015     <- NULL
  
input.data$Individualsyear1
##  [1] 0 2 0 0 0 0 0 2 0 0 2 0 1 2 0 2 1 0 1 0 0 1 3 2 4 1 0 0 2 0 0 1 1 0 1 4 2 0
## [39] 0 2 0 1 1 1 2 2 0 2 2 1 2 2 1 4 2 4 1 1 0 0 1 3 0 2 1 1 1 1 5 3 3 0 3 3 0 3
## [77] 1 0 1 4 0 0 1 3
input.data$Individualsyear2
##  [1] 0 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 1 2 0 0 0
## [39] 0 0 0 0 1 0 2 1 1 2 1 2 3 2 2 2 1 1 0 1 1 2 0 0 0 2 0 2 1 0 7 0 4 1 1 2 0 2
## [77] 1 0 0 1 0 0 0 2
input.data$twoyear_indchange
##  [1]  0 -1  0  1  0  1  1 -2  0  0 -1  0 -1 -2  0 -2 -1  0 -1  0  0 -1 -3 -2 -4
## [26] -1  1  0  0  0  0 -1 -1  1  1 -4 -2  0  0 -2  0 -1  0 -1  0 -1  1  0 -1  1
## [51]  1  0  1 -2 -1 -3 -1  0  1  2 -1 -3  0  0 -1  1  0 -1  2 -3  1  1 -2 -1  0
## [76] -1  0  0 -1 -3  0  0 -1 -1
# Groan, covariate names must be 10 characters or less (a limitation in RMark)
# we need to rename some of the variables
input.data <- plyr::rename(input.data, c("salt_button"           ="salt_butt",
                                         "Individualsyear1"      ="icats1",
                                         "dist_cat2014_z"        ="dist2014z",
                                         "bin_2014cat"           ="icat2014",
                                         "twoyear_indchange"     ="delta_cats"))
names(input.data)
##  [1] "Site"                   "UTM.N"                  "UTM.E"                 
##  [4] "X2015.Start.Date"       "X2015.End.Date"         "Rabbits.2013.2014"     
##  [7] "X"                      "X.1"                    "X.2"                   
## [10] "X.3"                    "X.4"                    "X.5"                   
## [13] "X.6"                    "X.7"                    "X.8"                   
## [16] "X.9"                    "X.10"                   "X.11"                  
## [19] "X.12"                   "X.13"                   "X.14"                  
## [22] "Rabbits.2015"           "X.15"                   "X.16"                  
## [25] "X.17"                   "X.18"                   "X.19"                  
## [28] "X.20"                   "X.21"                   "X.22"                  
## [31] "X.23"                   "X.24"                   "X.25"                  
## [34] "X.26"                   "X.27"                   "X.28"                  
## [37] "X.29"                   "X.30"                   "Cats.2013.2014"        
## [40] "X.31"                   "X.32"                   "X.33"                  
## [43] "X.34"                   "X.35"                   "X.36"                  
## [46] "X.37"                   "X.38"                   "X.39"                  
## [49] "X.40"                   "X.41"                   "X.42"                  
## [52] "X.43"                   "X.44"                   "X.45"                  
## [55] "Cats.2015"              "X.46"                   "X.47"                  
## [58] "X.48"                   "X.49"                   "X.50"                  
## [61] "X.51"                   "X.52"                   "X.53"                  
## [64] "X.54"                   "X.55"                   "X.56"                  
## [67] "X.57"                   "X.58"                   "X.59"                  
## [70] "X.60"                   "year_2013"              "dist_cam_z"            
## [73] "Total.CatCaps_2013_14"  "CatIndividuals_2015"    "RabbitPresence_2013_14"
## [76] "HumanTrail"             "Rabbitat"               "Rabbitat_buff"         
## [79] "HumanTrail.1"           "dist_rd_z"              "dist_dev_z"            
## [82] "dist2014z"              "dist_cat2015_z"         "icat2014"              
## [85] "bin_2015cat"            "bin_20142015"           "DESCRIPTION"           
## [88] "freshwater"             "salt_butt"              "upland"                
## [91] "hectares_z"             "LiDar_z"                "delta.icats"           
## [94] "icats1"                 "Individualsyear2"       "delta_cats"            
## [97] "RabbitPresence"
# the paper collapses the different habitats into 3 categories, and creates indicator variables
unique(input.data$DESCRIPTION)
## [1] "Buttonwood"         "Freshwater Wetland" "Pineland"          
## [4] "Hammock"            "Scrub Mangrove"     "Exotic"            
## [7] "Salt Marsh"
xtabs(~DESCRIPTION+salt_butt,  data=input.data,exclude=NULL, na.action=na.pass)
##                     salt_butt
## DESCRIPTION           0  1
##   Buttonwood          0  7
##   Exotic              1  0
##   Freshwater Wetland 27  0
##   Hammock             6  0
##   Pineland           41  0
##   Salt Marsh          0  1
##   Scrub Mangrove      0  1
xtabs(~DESCRIPTION+freshwater, data=input.data,exclude=NULL, na.action=na.pass)
##                     freshwater
## DESCRIPTION           0  1
##   Buttonwood          7  0
##   Exotic              1  0
##   Freshwater Wetland  0 27
##   Hammock             6  0
##   Pineland           41  0
##   Salt Marsh          1  0
##   Scrub Mangrove      1  0
xtabs(~DESCRIPTION+upland,     data=input.data,exclude=NULL, na.action=na.pass)
##                     upland
## DESCRIPTION           0  1
##   Buttonwood          7  0
##   Exotic              0  1
##   Freshwater Wetland 27  0
##   Hammock             0  6
##   Pineland            0 41
##   Salt Marsh          1  0
##   Scrub Mangrove      1  0
# distance to sites with cat removed in 2014 vs binary indicator
input.data$icat2014
##  [1] 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 1 1
## [39] 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 0 0
## [77] 0 0 1 1 1 0 0 1
input.data$dist2014z
##  [1]  0.51 -1.60 -0.88 -0.75  0.34 -0.27  1.31  0.92  0.41  1.20  0.67  0.46
## [13]  0.37  0.18  0.55  0.91  0.11  0.44  1.42 -0.45  1.49  1.47 -0.90 -1.29
## [25]  0.29  1.02  1.05  1.38  1.17  0.11 -0.26 -1.14 -0.66 -0.19 -0.39 -1.57
## [37] -1.15 -1.14 -0.62 -1.52 -1.06  0.07 -0.80 -1.14 -0.62  0.61 -0.23 -0.04
## [49]  1.51  1.53  1.45  1.10  0.69  2.20  1.83  0.27  0.27  0.58  0.55 -0.32
## [61]  0.07 -1.22 -0.71 -0.36  0.19 -1.33 -0.83 -0.73 -0.49 -1.09 -1.40 -0.88
## [73] -1.09 -0.99  0.62  1.61  1.06 -0.09 -0.60 -1.12 -1.20 -0.09 -0.16 -1.18
ggplot(data=input.data, aes(x=dist2014z, y=icat2014))+
   ggtitle("indicatior if cats captures within 500m buffer of camera trap")+
   geom_point()

# The author defines a set of global covariates that are used
global.covar.vars <- c("HumanTrail","Rabbitat","dist_dev_z","freshwater","salt_butt","hectares_z","LiDar_z")
setdiff(global.covar.vars, names(input.data))
## character(0)
#####################################################################
#####################################################################
#####################################################################
# First model occupancy for the rabbits in the first year
# See Table 1 of the paper for the results from a dynamic occupancy

rabbit.detect.vars <- c("Rabbits.2013.2014","X", paste0("X.",1:14))
rabbit.input.history <- input.data[, rabbit.detect.vars]

# do some basic checks on your data 
# e.g. check number of sites; number of visits etc
nrow(rabbit.input.history)
## [1] 84
ncol(rabbit.input.history)
## [1] 16
range(rabbit.input.history, na.rm=TRUE)
## [1] 0 1
sum(is.na(rabbit.input.history))
## [1] 52
sum(rabbit.input.history, na.rm=TRUE)
## [1] 58
other.covar.vars <- c("RabbitPresence_2013_14",  # were rabbits were detected
                      "icats1",    # number of individual cats in year 1
                      "dist2014z", # distance to site with a cat in 2014 
                      "icat2014")  # indicator if cat captured within 500m of the site in 2014
setdiff(other.covar.vars, names(input.data))
## character(0)
site.covar <- input.data[, c(global.covar.vars,other.covar.vars)]
row.names(site.covar) <- NULL
head(site.covar)
##   HumanTrail Rabbitat dist_dev_z freshwater salt_butt hectares_z LiDar_z
## 1          0        1       1.05          0         1      -0.74   -0.35
## 2          0        1      -0.83          1         0      -0.78   -0.88
## 3          0        1       0.12          1         0      -0.78   -1.13
## 4          0        1       0.00          1         0      -0.78   -0.84
## 5          1        1       2.20          0         0       0.51   -0.32
## 6          1        0       1.02          0         0       1.84   -0.07
##   RabbitPresence_2013_14 icats1 dist2014z icat2014
## 1                      0      0      0.51        0
## 2                      1      2     -1.60        1
## 3                      1      0     -0.88        1
## 4                      1      0     -0.75        1
## 5                      1      0      0.34        0
## 6                      1      0     -0.27        0
#Format the capture history to be used by RMark and deal with missing values
input.history <- data.frame(freq=1,
                            ch=apply(rabbit.input.history,1,paste, collapse=""), stringsAsFactors=FALSE)
head(input.history,n=20)
##    freq                ch
## 1     1  0000000000000000
## 2     1  0000010100100010
## 3     1  0100000001011101
## 4     1  1000000000000000
## 5     1  0100000000000000
## 6     1  0010000000001000
## 7     1  0000000010000011
## 8     1  0000000000000000
## 9     1  0000000001000001
## 10    1  0000000000000000
## 11    1  0000000000000000
## 12    1  0000000000000000
## 13    1  0000000000000000
## 14    1  0000000000000000
## 15    1  1000000000000000
## 16    1  0000000000000000
## 17    1  0001100000000000
## 18    1  0000000000000000
## 19    1  0000000000000000
## 20    1 100000000001000NA
input.history$ch <- gsub("NA",".",input.history$ch, fixed=TRUE)
head(input.history,n=20)
##    freq               ch
## 1     1 0000000000000000
## 2     1 0000010100100010
## 3     1 0100000001011101
## 4     1 1000000000000000
## 5     1 0100000000000000
## 6     1 0010000000001000
## 7     1 0000000010000011
## 8     1 0000000000000000
## 9     1 0000000001000001
## 10    1 0000000000000000
## 11    1 0000000000000000
## 12    1 0000000000000000
## 13    1 0000000000000000
## 14    1 0000000000000000
## 15    1 1000000000000000
## 16    1 0000000000000000
## 17    1 0001100000000000
## 18    1 0000000000000000
## 19    1 0000000000000000
## 20    1 100000000001000.
#Add site covariates to input history
input.history = cbind(input.history,site.covar)
head(input.history)
##   freq               ch HumanTrail Rabbitat dist_dev_z freshwater salt_butt
## 1    1 0000000000000000          0        1       1.05          0         1
## 2    1 0000010100100010          0        1      -0.83          1         0
## 3    1 0100000001011101          0        1       0.12          1         0
## 4    1 1000000000000000          0        1       0.00          1         0
## 5    1 0100000000000000          1        1       2.20          0         0
## 6    1 0010000000001000          1        0       1.02          0         0
##   hectares_z LiDar_z RabbitPresence_2013_14 icats1 dist2014z icat2014
## 1      -0.74   -0.35                      0      0      0.51        0
## 2      -0.78   -0.88                      1      2     -1.60        1
## 3      -0.78   -1.13                      1      0     -0.88        1
## 4      -0.78   -0.84                      1      0     -0.75        1
## 5       0.51   -0.32                      1      0      0.34        0
## 6       1.84   -0.07                      1      0     -0.27        0
# With 16 detections visits, look at the naive occupancy vs. the different covariates
prop.table(xtabs(~RabbitPresence_2013_14+HumanTrail, data=input.history, exclude=NULL, na.action=na.pass), margin=2)
##                       HumanTrail
## RabbitPresence_2013_14         0         1
##                      0 0.5967742 0.5909091
##                      1 0.4032258 0.4090909
prop.table(xtabs(~RabbitPresence_2013_14+Rabbitat,   data=input.history, exclude=NULL, na.action=na.pass), margin=2)
##                       Rabbitat
## RabbitPresence_2013_14         0         1
##                      0 0.8800000 0.4745763
##                      1 0.1200000 0.5254237
prop.table(xtabs(~RabbitPresence_2013_14+freshwater, data=input.history, exclude=NULL, na.action=na.pass), margin=2)
##                       freshwater
## RabbitPresence_2013_14         0         1
##                      0 0.7894737 0.1851852
##                      1 0.2105263 0.8148148
prop.table(xtabs(~RabbitPresence_2013_14+salt_butt,  data=input.history, exclude=NULL, na.action=na.pass), margin=2)
##                       salt_butt
## RabbitPresence_2013_14         0         1
##                      0 0.5600000 0.8888889
##                      1 0.4400000 0.1111111
prop.table(xtabs(~RabbitPresence_2013_14+icats1,     data=input.history, exclude=NULL, na.action=na.pass), margin=2)
##                       icats1
## RabbitPresence_2013_14         0         1         2         3         4
##                      0 0.4666667 0.6521739 0.5882353 0.7500000 0.8000000
##                      1 0.5333333 0.3478261 0.4117647 0.2500000 0.2000000
##                       icats1
## RabbitPresence_2013_14         5
##                      0 1.0000000
##                      1 0.0000000
xtabs(~freshwater+salt_butt,   data=input.history, exclude=NULL, na.action=na.pass)
##           salt_butt
## freshwater  0  1
##          0 48  9
##          1 27  0
#Create the RMark data structure
# 1 years with 16 camera trapping days/year
max.visit <- 16

rabbit.data <- process.data(data=input.history, 
                                model="Occupancy"
                                )
rabbit.data
## $data
##    freq               ch HumanTrail Rabbitat dist_dev_z freshwater salt_butt
## 1     1 0000000000000000          0        1       1.05          0         1
## 2     1 0000010100100010          0        1      -0.83          1         0
## 3     1 0100000001011101          0        1       0.12          1         0
## 4     1 1000000000000000          0        1       0.00          1         0
## 5     1 0100000000000000          1        1       2.20          0         0
## 6     1 0010000000001000          1        0       1.02          0         0
## 7     1 0000000010000011          0        1      -0.35          0         0
## 8     1 0000000000000000          0        0       1.00          0         0
## 9     1 0000000001000001          0        1       0.98          0         0
## 10    1 0000000000000000          0        1      -0.24          0         0
## 11    1 0000000000000000          0        0       2.18          0         0
## 12    1 0000000000000000          1        1       0.50          0         0
## 13    1 0000000000000000          0        1       0.40          0         0
## 14    1 0000000000000000          0        0      -0.34          0         0
## 15    1 1000000000000000          0        1       1.13          0         0
## 16    1 0000000000000000          0        0       0.29          0         0
## 17    1 0001100000000000          0        0       1.61          0         0
## 18    1 0000000000000000          0        0       0.97          0         0
## 19    1 0000000000000000          0        0      -0.38          0         0
## 20    1 100000000001000.          0        1       1.38          1         0
## 21    1 000000000010000.          0        1       0.69          1         0
## 22    1 000000000000000.          0        0       0.21          0         0
## 23    1 0000000000100100          0        1      -1.01          1         0
## 24    1 0000000000010000          0        1      -0.48          1         0
## 25    1 000000000000000.          0        0      -0.08          0         0
## 26    1 0000000000000000          0        1      -0.14          0         0
## 27    1 0000001000000000          0        1       0.06          1         0
## 28    1 0000000100000000          0        0      -0.79          0         0
## 29    1 0000000000000000          1        0       1.59          0         0
## 30    1 000000000000000.          0        1       1.68          0         0
## 31    1 000000000000000.          0        1       2.08          0         1
## 32    1 000000000000000.          0        0      -0.72          0         0
## 33    1 000000000000000.          1        1      -0.54          0         1
## 34    1 100000000000000.          0        1       0.41          1         0
## 35    1 1100101000000000          0        1      -1.13          1         0
## 36    1 000000000000000.          0        1      -0.85          1         0
## 37    1 000000000000000.          0        1      -0.93          1         0
## 38    1 0000100000000001          0        1      -0.95          1         0
## 39    1 000001000000000.          0        1      -0.76          1         0
## 40    1 000010000000001.          0        1      -0.31          1         0
## 41    1 0000000000000000          0        1      -0.01          1         0
## 42    1 0000000000000000          0        0      -1.01          0         0
## 43    1 0000000000000000          0        1      -0.54          1         0
## 44    1 0000000000000000          0        1      -0.96          0         0
## 45    1 0000000000000000          0        0      -0.85          0         0
## 46    1 000000000000000.          0        1      -0.96          0         1
## 47    1 000000000000000.          0        1      -0.49          1         0
## 48    1 000000000010000.          1        1       2.24          1         0
## 49    1 000000000000000.          0        0      -0.69          0         0
## 50    1 000000000000000.          1        0       0.06          0         0
## 51    1 000000000000000.          1        0       0.38          0         0
## 52    1 000000000000000.          1        1       1.26          0         0
## 53    1 000000010000000.          1        0       0.38          0         0
## 54    1 000000000000000.          0        1      -0.85          0         0
## 55    1 000000000000000.          0        1      -0.57          0         0
## 56    1 000000000000000.          0        1      -0.98          0         0
## 57    1 000000000000000.          1        1       1.22          0         1
## 58    1 000000000000000.          1        1       1.62          0         1
## 59    1 000000000000000.          1        1       0.71          0         0
## 60    1 000000000000000.          0        0      -0.59          0         0
## 61    1 000010000000000.          0        1      -0.82          0         0
## 62    1 000000000000000.          0        1       0.22          0         0
## 63    1 000000001000000.          0        1      -0.75          1         0
## 64    1 000000000000000.          0        1      -0.47          1         0
## 65    1 000000000000000.          1        1       0.34          0         1
## 66    1 000000000000000.          1        1      -0.40          1         0
## 67    1 000000000000000.          0        1      -0.29          1         0
## 68    1 000000000001000.          1        1       0.18          1         0
## 69    1 000000000000000.          0        0      -0.70          0         0
## 70    1 000000000000000.          0        1      -0.59          0         0
## 71    1 000000000000000.          0        0      -0.87          0         0
## 72    1 000001000000000.          0        1      -0.59          1         0
## 73    1 000000000000000.          1        1      -0.65          0         0
## 74    1 000000000000000.          0        0      -0.81          0         0
## 75    1 000000000000010.          0        1       2.88          0         0
## 76    1 000000000000000.          1        1       2.65          0         0
## 77    1 000000000000000.          1        0       0.45          0         0
## 78    1 000000000000000.          0        1      -0.26          0         0
## 79    1 000010001000110.          0        1      -0.68          1         0
## 80    1 000000000000000.          1        1      -0.75          0         0
## 81    1 000000000000000.          0        1      -0.15          1         0
## 82    1 010101000000011.          1        1       0.26          0         1
## 83    1 000000000001100.          1        1       0.03          0         1
## 84    1 000000000000000.          0        0      -0.96          0         0
##    hectares_z LiDar_z RabbitPresence_2013_14 icats1 dist2014z icat2014
## 1       -0.74   -0.35                      0      0      0.51        0
## 2       -0.78   -0.88                      1      2     -1.60        1
## 3       -0.78   -1.13                      1      0     -0.88        1
## 4       -0.78   -0.84                      1      0     -0.75        1
## 5        0.51   -0.32                      1      0      0.34        0
## 6        1.84   -0.07                      1      0     -0.27        0
## 7        0.51   -0.33                      0      0      1.31        0
## 8        0.51    0.43                      1      2      0.92        0
## 9        1.84   -0.35                      1      0      0.41        0
## 10       1.84    0.09                      0      0      1.20        0
## 11      -0.71   -0.21                      0      2      0.67        0
## 12       0.38   -0.50                      1      0      0.46        0
## 13       0.38    1.81                      0      1      0.37        0
## 14       1.84    1.47                      0      2      0.18        0
## 15       1.84   -0.86                      1      0      0.55        0
## 16       0.38    1.62                      0      2      0.91        0
## 17       1.84    0.11                      1      1      0.11        0
## 18       0.51    1.28                      0      0      0.44        0
## 19       0.51    1.00                      0      1      1.42        0
## 20      -0.78   -0.80                      1      0     -0.45        0
## 21      -1.38   -0.82                      1      0      1.49        0
## 22       0.51    1.58                      0      1      1.47        0
## 23      -0.78   -0.86                      1      3     -0.90        1
## 24      -0.78   -1.17                      1      2     -1.29        1
## 25       1.84    2.23                      0      4      0.29        0
## 26       0.38    0.61                      0      1      1.02        0
## 27      -1.12   -0.92                      0      0      1.05        0
## 28       1.84    0.58                      0      0      1.38        0
## 29      -0.71    0.54                      0      2      1.17        0
## 30      -1.21   -0.89                      0      0      0.11        0
## 31      -1.09   -1.05                      0      0     -0.26        0
## 32      -1.01    0.88                      0      1     -1.14        1
## 33      -1.31   -1.76                      0      1     -0.66        0
## 34       0.18   -1.12                      1      0     -0.19        0
## 35      -0.03   -1.24                      1      1     -0.39        0
## 36       0.18   -0.77                      1      4     -1.57        1
## 37       0.18   -0.44                      0      2     -1.15        1
## 38       0.18   -0.66                      1      0     -1.14        1
## 39      -0.03   -0.67                      0      0     -0.62        0
## 40       0.18   -1.23                      1      2     -1.52        1
## 41       0.18   -1.03                      1      0     -1.06        1
## 42       1.84    2.33                      0      1      0.07        0
## 43      -0.03   -1.17                      0      1     -0.80        1
## 44      -1.49   -0.58                      0      1     -1.14        1
## 45      -1.22   -0.07                      0      2     -0.62        0
## 46      -1.28   -0.42                      0      2      0.61        0
## 47      -0.95   -0.47                      0      0     -0.23        0
## 48      -0.58   -0.20                      1      2     -0.04        0
## 49       0.54    0.69                      0      2      1.51        0
## 50       0.54    1.96                      0      1      1.53        0
## 51       1.95    0.59                      0      2      1.45        0
## 52       1.95   -0.09                      1      2      1.10        0
## 53       0.54    2.65                      0      1      0.69        0
## 54      -1.18   -0.69                      0      4      2.20        0
## 55      -1.18   -0.02                      0      2      1.83        0
## 56      -1.28    0.13                      0      4      0.27        0
## 57      -1.08   -1.22                      0      1      0.27        0
## 58      -1.08   -0.65                      0      1      0.58        0
## 59      -1.13   -0.38                      0      0      0.55        0
## 60       1.95    2.10                      0      0     -0.32        0
## 61       1.95   -0.61                      1      1      0.07        0
## 62      -0.80    1.24                      0      3     -1.22        1
## 63       0.14   -1.26                      1      0     -0.71        1
## 64       0.14   -1.11                      1      2     -0.36        0
## 65      -1.15   -0.97                      0      1      0.19        0
## 66       0.36   -0.51                      1      1     -1.33        1
## 67       0.36   -0.95                      1      1     -0.83        1
## 68       0.14   -0.92                      1      1     -0.73        1
## 69       0.19    0.99                      0      5     -0.49        0
## 70       0.19    0.16                      0      3     -1.09        1
## 71       0.19    0.09                      0      3     -1.40        1
## 72       0.14   -0.79                      1      0     -0.88        1
## 73       0.19    0.24                      1      3     -1.09        1
## 74       0.19    0.32                      0      3     -0.99        1
## 75       0.67   -0.35                      0      0      0.62        0
## 76       1.95    1.34                      0      3      1.61        0
## 77       0.54    1.59                      0      1      1.06        0
## 78      -1.01   -0.26                      1      0     -0.09        0
## 79       0.14   -1.05                      1      1     -0.60        1
## 80      -0.80    0.79                      0      4     -1.12        1
## 81       0.36   -0.43                      1      0     -1.20        1
## 82      -0.98   -1.24                      0      0     -0.09        0
## 83      -1.08   -0.96                      1      1     -0.16        0
## 84       0.19    0.70                      0      3     -1.18        1
## 
## $model
## [1] "Occupancy"
## 
## $mixtures
## [1] 1
## 
## $freq
##    group1
## 1       1
## 2       1
## 3       1
## 4       1
## 5       1
## 6       1
## 7       1
## 8       1
## 9       1
## 10      1
## 11      1
## 12      1
## 13      1
## 14      1
## 15      1
## 16      1
## 17      1
## 18      1
## 19      1
## 20      1
## 21      1
## 22      1
## 23      1
## 24      1
## 25      1
## 26      1
## 27      1
## 28      1
## 29      1
## 30      1
## 31      1
## 32      1
## 33      1
## 34      1
## 35      1
## 36      1
## 37      1
## 38      1
## 39      1
## 40      1
## 41      1
## 42      1
## 43      1
## 44      1
## 45      1
## 46      1
## 47      1
## 48      1
## 49      1
## 50      1
## 51      1
## 52      1
## 53      1
## 54      1
## 55      1
## 56      1
## 57      1
## 58      1
## 59      1
## 60      1
## 61      1
## 62      1
## 63      1
## 64      1
## 65      1
## 66      1
## 67      1
## 68      1
## 69      1
## 70      1
## 71      1
## 72      1
## 73      1
## 74      1
## 75      1
## 76      1
## 77      1
## 78      1
## 79      1
## 80      1
## 81      1
## 82      1
## 83      1
## 84      1
## 
## $nocc
## [1] 16
## 
## $nocc.secondary
## NULL
## 
## $time.intervals
##  [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 
## $begin.time
## [1] 1
## 
## $age.unit
## [1] 1
## 
## $initial.ages
## [1] 0
## 
## $group.covariates
## NULL
## 
## $nstrata
## [1] 1
## 
## $strata.labels
## NULL
## 
## $counts
## NULL
## 
## $reverse
## [1] FALSE
## 
## $areas
## NULL
## 
## $events
## NULL
# Get the parameter names
# What are the parameter names for Single Season Single Species models
setup.parameters("Occupancy", check=TRUE)
## [1] "p"   "Psi"
# The top model for the dyanmic occuanpcy is psi(global), .... p(humtrail)
# If you look at the supplemental table for model 20 you see that the "global" terms are
# this is psi(humtrail+rabbitat+devel+fresh+salt_butt+patch+LiDar)

# Notice the commas between the column and the placement of the quotes
# Define the models.
#    model.type can be 
#The random occupancy model cannot be fit here. See the other code in this directory.
# The reserved keywords can be found by looking at the ddl structures earlier

global <- paste0("~",paste0(global.covar.vars, collapse="+"),collapse="")

model.list.csv <- textConnection("
p,               Psi,              model.type, comment
~HumanTrail,   ~global+icats1,       Occupancy, (20) in paper
~HumanTrail,   ~1,                   Occupancy,
~1,            ~global+icats1,       Occupancy,
~1,            ~dist_dev_z,          Occupancy,
~1,            ~Rabbitat,            Occupancy,
~1,            ~freshwater,          Occupancy,
~1,            ~icats1,              Occupancy,
~1,            ~HumanTrail,          Occupancy,
~1,            ~freshwater+icats1,   Occupancy,
~1,            ~freshwater+icats1+Rabbitat,   Occupancy")


model.list <- read.csv(model.list.csv, header=TRUE, as.is=TRUE, strip.white=TRUE)
model.list$model.number <- 1:nrow(model.list)
model.list
##              p                         Psi model.type       comment
## 1  ~HumanTrail              ~global+icats1  Occupancy (20) in paper
## 2  ~HumanTrail                          ~1  Occupancy              
## 3           ~1              ~global+icats1  Occupancy              
## 4           ~1                 ~dist_dev_z  Occupancy              
## 5           ~1                   ~Rabbitat  Occupancy              
## 6           ~1                 ~freshwater  Occupancy              
## 7           ~1                     ~icats1  Occupancy              
## 8           ~1                 ~HumanTrail  Occupancy              
## 9           ~1          ~freshwater+icats1  Occupancy              
## 10          ~1 ~freshwater+icats1+Rabbitat  Occupancy              
##    model.number
## 1             1
## 2             2
## 3             3
## 4             4
## 5             5
## 6             6
## 7             7
## 8             8
## 9             9
## 10           10
# substitute for some of the shortcuts
model.list$Psi <- gsub("~global",global, model.list$Psi, )
model.list
##              p
## 1  ~HumanTrail
## 2  ~HumanTrail
## 3           ~1
## 4           ~1
## 5           ~1
## 6           ~1
## 7           ~1
## 8           ~1
## 9           ~1
## 10          ~1
##                                                                               Psi
## 1  ~HumanTrail+Rabbitat+dist_dev_z+freshwater+salt_butt+hectares_z+LiDar_z+icats1
## 2                                                                              ~1
## 3  ~HumanTrail+Rabbitat+dist_dev_z+freshwater+salt_butt+hectares_z+LiDar_z+icats1
## 4                                                                     ~dist_dev_z
## 5                                                                       ~Rabbitat
## 6                                                                     ~freshwater
## 7                                                                         ~icats1
## 8                                                                     ~HumanTrail
## 9                                                              ~freshwater+icats1
## 10                                                    ~freshwater+icats1+Rabbitat
##    model.type       comment model.number
## 1   Occupancy (20) in paper            1
## 2   Occupancy                          2
## 3   Occupancy                          3
## 4   Occupancy                          4
## 5   Occupancy                          5
## 6   Occupancy                          6
## 7   Occupancy                          7
## 8   Occupancy                          8
## 9   Occupancy                          9
## 10  Occupancy                         10
# fit the models
myobs <- ls()
myobs <- myobs[ grepl("m...",myobs,fixed=TRUE)]
cat("Removing ", myobs, "\n")
## Removing
rm(list=myobs)
cleanup(ask=FALSE)

model.fits <- plyr::dlply(model.list, "model.number", function(x,input.history){
  cat("\n\n***** Starting ", unlist(x), "\n")

  # we need to process the data in the loop to allow for different data types
  # notice that max.visits.per.year and n.season are defined outside the function (bad programming practise)
  input.data<- process.data(data=input.history, model=x$model.type)
  # set up the ddls as needed for time-varying covariates.
  # you need to do this in the loop because different paraemterizations have different ddl structures
  input.ddl <- make.design.data(input.data)
  
  model.parameters=list(
    Psi   =list(formula=as.formula(eval(x$Psi))),
    p     =list(formula=as.formula(eval(x$p  )))    )

  fit <- RMark::mark(input.data, ddl=input.ddl,
                     model=x$model.type,
                     model.parameters=model.parameters
                     #,brief=TRUE,output=FALSE, delete=TRUE
                     #,invisible=TRUE,output=TRUE  # set for debugging
  )

  mnumber <- paste("m...",formatC(x$model.number, width = 3, format = "d", flag = "0"),sep="")
  assign( mnumber, fit, envir=.GlobalEnv)
  #browser()
  fit
  
},input.history=input.history)
## 
## 
## ***** Starting  ~HumanTrail ~HumanTrail+Rabbitat+dist_dev_z+freshwater+salt_butt+hectares_z+LiDar_z+icats1 Occupancy (20) in paper 1 
## 
## Output summary for Occupancy model
## Name : p(~HumanTrail)Psi(~HumanTrail + Rabbitat + dist_dev_z + freshwater + salt_butt + hectares_z + LiDar_z + icats1) 
## 
## Npar :  11
## -2lnL:  405.1902
## AICc :  430.8569
## 
## Beta
##                    estimate         se         lcl        ucl
## p:(Intercept)    -2.3304590  0.1627693  -2.6494868  -2.011431
## p:HumanTrail     -0.0365147  0.3686350  -0.7590394   0.686010
## Psi:(Intercept)  -1.9715646  3.9313280  -9.6769676   5.733839
## Psi:HumanTrail   10.6505360 11.0306750 -10.9695860  32.270659
## Psi:Rabbitat     -0.6847231  2.9409807  -6.4490454   5.079599
## Psi:dist_dev_z   -0.5417020  0.7882886  -2.0867478   1.003344
## Psi:freshwater   43.8216010 43.7563750 -41.9408970 129.584100
## Psi:salt_butt     9.5082147 12.4825200 -14.9575250  33.973954
## Psi:hectares_z    7.7346818  7.6075254  -7.1760682  22.645432
## Psi:LiDar_z      -0.9842652  1.3207657  -3.5729661   1.604436
## Psi:icats1      -11.4199110 10.9643300 -32.9100000  10.070177
## 
## 
## Real Parameter p
##          1         2         3         4         5         6         7
##  0.0878621 0.0878621 0.0878621 0.0878621 0.0878621 0.0878621 0.0878621
##          8         9        10        11        12        13        14
##  0.0878621 0.0878621 0.0878621 0.0878621 0.0878621 0.0878621 0.0878621
##         15        16
##  0.0878621 0.0878621
## 
## 
## Real Parameter Psi
##          1
##  0.8258169
## 
## 
## ***** Starting  ~HumanTrail ~1 Occupancy  2 
## 
## Output summary for Occupancy model
## Name : p(~HumanTrail)Psi(~1) 
## 
## Npar :  3
## -2lnL:  448.8881
## AICc :  455.1881
## 
## Beta
##                   estimate        se        lcl       ucl
## p:(Intercept)   -2.1652649 0.1984234 -2.5541749 -1.776355
## p:HumanTrail    -0.1424886 0.4000019 -0.9264923  0.641515
## Psi:(Intercept) -0.2110573 0.2939012 -0.7871036  0.364989
## 
## 
## Real Parameter p
##          1         2         3         4         5         6         7
##  0.0995187 0.0995187 0.0995187 0.0995187 0.0995187 0.0995187 0.0995187
##          8         9        10        11        12        13        14
##  0.0995187 0.0995187 0.0995187 0.0995187 0.0995187 0.0995187 0.0995187
##         15        16
##  0.0995187 0.0995187
## 
## 
## Real Parameter Psi
##          1
##  0.4474307
## 
## 
## ***** Starting  ~1 ~HumanTrail+Rabbitat+dist_dev_z+freshwater+salt_butt+hectares_z+LiDar_z+icats1 Occupancy  3 
## 
## Output summary for Occupancy model
## Name : p(~1)Psi(~HumanTrail + Rabbitat + dist_dev_z + freshwater + salt_butt + hectares_z + LiDar_z + icats1) 
## 
## Npar :  10
## -2lnL:  405.2001
## AICc :  428.2138
## 
## Beta
##                    estimate         se        lcl        ucl
## p:(Intercept)    -2.3381125  0.1443965  -2.621130  -2.055095
## Psi:(Intercept)  -1.9945896  4.0450748  -9.922936   5.933757
## Psi:HumanTrail   10.6649800 11.4168420 -11.712031  33.041992
## Psi:Rabbitat     -0.6680538  2.9061555  -6.364119   5.028011
## Psi:dist_dev_z   -0.5430811  0.7892060  -2.089925   1.003763
## Psi:freshwater   44.0956310 45.6993110 -45.475019 133.666280
## Psi:salt_butt     9.6261074 13.1506540 -16.149176  35.401391
## Psi:hectares_z    7.7768542  7.9413688  -7.788229  23.341937
## Psi:LiDar_z      -0.9688752  1.3047814  -3.526247   1.588496
## Psi:icats1      -11.4891070 11.4535090 -33.937984  10.959771
## 
## 
## Real Parameter p
##          1         2         3         4         5         6         7
##  0.0880153 0.0880153 0.0880153 0.0880153 0.0880153 0.0880153 0.0880153
##          8         9        10        11        12        13        14
##  0.0880153 0.0880153 0.0880153 0.0880153 0.0880153 0.0880153 0.0880153
##         15        16
##  0.0880153 0.0880153
## 
## 
## Real Parameter Psi
##          1
##  0.8268588
## 
## 
## ***** Starting  ~1 ~dist_dev_z Occupancy  4 
## 
## Output summary for Occupancy model
## Name : p(~1)Psi(~dist_dev_z) 
## 
## Npar :  3
## -2lnL:  448.3872
## AICc :  454.6872
## 
## Beta
##                   estimate        se        lcl        ucl
## p:(Intercept)   -2.1940917 0.1813106 -2.5494605 -1.8387229
## Psi:(Intercept) -0.2399991 0.2939109 -0.8160644  0.3360662
## Psi:dist_dev_z   0.2139611 0.2743336 -0.3237328  0.7516549
## 
## 
## Real Parameter p
##          1         2         3         4         5         6         7
##  0.1002823 0.1002823 0.1002823 0.1002823 0.1002823 0.1002823 0.1002823
##          8         9        10        11        12        13        14
##  0.1002823 0.1002823 0.1002823 0.1002823 0.1002823 0.1002823 0.1002823
##         15        16
##  0.1002823 0.1002823
## 
## 
## Real Parameter Psi
##          1
##  0.4449115
## 
## 
## ***** Starting  ~1 ~Rabbitat Occupancy  5 
## 
## Output summary for Occupancy model
## Name : p(~1)Psi(~Rabbitat) 
## 
## Npar :  3
## -2lnL:  442.3904
## AICc :  448.6904
## 
## Beta
##                  estimate        se        lcl        ucl
## p:(Intercept)   -2.195926 0.1815495 -2.5517628 -1.8400888
## Psi:(Intercept) -1.391517 0.5785782 -2.5255306 -0.2575041
## Psi:Rabbitat     1.596797 0.6625250  0.2982483  2.8953463
## 
## 
## Real Parameter p
##         1        2        3        4        5        6        7        8
##  0.100117 0.100117 0.100117 0.100117 0.100117 0.100117 0.100117 0.100117
##         9       10       11       12       13       14       15       16
##  0.100117 0.100117 0.100117 0.100117 0.100117 0.100117 0.100117 0.100117
## 
## 
## Real Parameter Psi
##          1
##  0.4329176
## 
## 
## ***** Starting  ~1 ~freshwater Occupancy  6 
## 
## Output summary for Occupancy model
## Name : p(~1)Psi(~freshwater) 
## 
## Npar :  3
## -2lnL:  432.4914
## AICc :  438.7914
## 
## Beta
##                  estimate        se        lcl       ucl
## p:(Intercept)   -2.195872 0.1815383 -2.5516874 -1.840057
## Psi:(Intercept) -1.032017 0.3602240 -1.7380563 -0.325978
## Psi:freshwater   2.646822 0.9479552  0.7888297  4.504814
## 
## 
## Real Parameter p
##          1         2         3         4         5         6         7
##  0.1001218 0.1001218 0.1001218 0.1001218 0.1001218 0.1001218 0.1001218
##          8         9        10        11        12        13        14
##  0.1001218 0.1001218 0.1001218 0.1001218 0.1001218 0.1001218 0.1001218
##         15        16
##  0.1001218 0.1001218
## 
## 
## Real Parameter Psi
##          1
##  0.4548104
## 
## 
## ***** Starting  ~1 ~icats1 Occupancy  7 
## 
## Output summary for Occupancy model
## Name : p(~1)Psi(~icats1) 
## 
## Npar :  3
## -2lnL:  434.194
## AICc :  440.494
## 
## Beta
##                   estimate        se        lcl        ucl
## p:(Intercept)   -2.1854604 0.1788186 -2.5359449 -1.8349758
## Psi:(Intercept)  0.8633936 0.4890935 -0.0952298  1.8220169
## Psi:icats1      -0.9956022 0.3177901 -1.6184708 -0.3727336
## 
## 
## Real Parameter p
##          1         2         3         4         5         6         7
##  0.1010638 0.1010638 0.1010638 0.1010638 0.1010638 0.1010638 0.1010638
##          8         9        10        11        12        13        14
##  0.1010638 0.1010638 0.1010638 0.1010638 0.1010638 0.1010638 0.1010638
##         15        16
##  0.1010638 0.1010638
## 
## 
## Real Parameter Psi
##          1
##  0.4030045
## 
## 
## ***** Starting  ~1 ~HumanTrail Occupancy  8 
## 
## Output summary for Occupancy model
## Name : p(~1)Psi(~HumanTrail) 
## 
## Npar :  3
## -2lnL:  448.8339
## AICc :  455.1339
## 
## Beta
##                   estimate        se       lcl        ucl
## p:(Intercept)   -2.1944736 0.1814201 -2.550057 -1.8388902
## Psi:(Intercept) -0.1522397 0.3327460 -0.804422  0.4999425
## Psi:HumanTrail  -0.2579762 0.6034353 -1.440709  0.9247569
## 
## 
## Real Parameter p
##          1         2         3         4         5         6         7
##  0.1002479 0.1002479 0.1002479 0.1002479 0.1002479 0.1002479 0.1002479
##          8         9        10        11        12        13        14
##  0.1002479 0.1002479 0.1002479 0.1002479 0.1002479 0.1002479 0.1002479
##         15        16
##  0.1002479 0.1002479
## 
## 
## Real Parameter Psi
##          1
##  0.4452689
## 
## 
## ***** Starting  ~1 ~freshwater+icats1 Occupancy  9 
## 
## Output summary for Occupancy model
## Name : p(~1)Psi(~freshwater + icats1) 
## 
## Npar :  4
## -2lnL:  416.9018
## AICc :  425.4081
## 
## Beta
##                   estimate        se        lcl        ucl
## p:(Intercept)   -2.2999524 0.1670603 -2.6273906 -1.9725142
## Psi:(Intercept)  0.6619266 0.7786362 -0.8642005  2.1880536
## Psi:freshwater   5.6681064 3.2987674 -0.7974778 12.1336910
## Psi:icats1      -1.8492627 0.8176438 -3.4518445 -0.2466809
## 
## 
## Real Parameter p
##          1         2         3         4         5         6         7
##  0.0911269 0.0911269 0.0911269 0.0911269 0.0911269 0.0911269 0.0911269
##          8         9        10        11        12        13        14
##  0.0911269 0.0911269 0.0911269 0.0911269 0.0911269 0.0911269 0.0911269
##         15        16
##  0.0911269 0.0911269
## 
## 
## Real Parameter Psi
##          1
##  0.5374856
## 
## 
## ***** Starting  ~1 ~freshwater+icats1+Rabbitat Occupancy  10 
## 
## Output summary for Occupancy model
## Name : p(~1)Psi(~freshwater + icats1 + Rabbitat) 
## 
## Npar :  5
## -2lnL:  416.8612
## AICc :  427.6304
## 
## Beta
##                   estimate        se       lcl        ucl
## p:(Intercept)   -2.3022866 0.1657357 -2.627128 -1.9774447
## Psi:(Intercept)  0.8284251 1.1585794 -1.442390  3.0992406
## Psi:freshwater   5.9401779 3.6085631 -1.132606 13.0129620
## Psi:icats1      -1.9084839 0.8795672 -3.632436 -0.1845322
## Psi:Rabbitat    -0.2063470 1.0361540 -2.237209  1.8245149
## 
## 
## Real Parameter p
##          1         2         3         4         5         6         7
##  0.0909338 0.0909338 0.0909338 0.0909338 0.0909338 0.0909338 0.0909338
##          8         9        10        11        12        13        14
##  0.0909338 0.0909338 0.0909338 0.0909338 0.0909338 0.0909338 0.0909338
##         15        16
##  0.0909338 0.0909338
## 
## 
## Real Parameter Psi
##          1
##  0.5459968
# examine individual model results

model.number <-9

summary(model.fits[[model.number]])
## Output summary for Occupancy model
## Name : p(~1)Psi(~freshwater + icats1) 
## 
## Npar :  4
## -2lnL:  416.9018
## AICc :  425.4081
## 
## Beta
##                   estimate        se        lcl        ucl
## p:(Intercept)   -2.2999524 0.1670603 -2.6273906 -1.9725142
## Psi:(Intercept)  0.6619266 0.7786362 -0.8642005  2.1880536
## Psi:freshwater   5.6681064 3.2987674 -0.7974778 12.1336910
## Psi:icats1      -1.8492627 0.8176438 -3.4518445 -0.2466809
## 
## 
## Real Parameter p
##          1         2         3         4         5         6         7
##  0.0911269 0.0911269 0.0911269 0.0911269 0.0911269 0.0911269 0.0911269
##          8         9        10        11        12        13        14
##  0.0911269 0.0911269 0.0911269 0.0911269 0.0911269 0.0911269 0.0911269
##         15        16
##  0.0911269 0.0911269
## 
## 
## Real Parameter Psi
##          1
##  0.5374856
model.fits[[model.number]]$results$real
##               estimate        se       lcl       ucl fixed    note
## p g1 a0 t1   0.0911269 0.0138364 0.0673963 0.1221191              
## Psi g1 a0 t1 0.5374856 0.2080525 0.1839027 0.8569979
model.fits[[model.number]]$results$beta
##                   estimate        se        lcl        ucl
## p:(Intercept)   -2.2999524 0.1670603 -2.6273906 -1.9725142
## Psi:(Intercept)  0.6619266 0.7786362 -0.8642005  2.1880536
## Psi:freshwater   5.6681064 3.2987674 -0.7974778 12.1336910
## Psi:icats1      -1.8492627 0.8176438 -3.4518445 -0.2466809
model.fits[[model.number]]$results$derived
## $Occupancy
##    estimate       lcl       ucl
## 1 0.5374856 0.1839027 0.8569979
model.fits[[model.number]]$results$derived$"psi Probability Occupied"
## NULL
model.fits[[model.number]]$results$derived$"lambda Rate of Change"
## NULL
model.fits[[model.number]]$results$derived$"log odds lambda"
## NULL
get.real(model.fits[[model.number]], "Psi", se=TRUE)
##              all.diff.index par.index  estimate        se       lcl       ucl
## Psi g1 a0 t1             17         2 0.5374856 0.2080525 0.1839027 0.8569979
##              fixed    note group age time Age Time
## Psi g1 a0 t1                   1   0    1   0    0
get.real(model.fits[[model.number]], "p",    se=TRUE)
##              all.diff.index par.index  estimate        se       lcl       ucl
## p g1 a0 t1                1         1 0.0911269 0.0138364 0.0673963 0.1221191
## p g1 a1 t2                2         1 0.0911269 0.0138364 0.0673963 0.1221191
## p g1 a2 t3                3         1 0.0911269 0.0138364 0.0673963 0.1221191
## p g1 a3 t4                4         1 0.0911269 0.0138364 0.0673963 0.1221191
## p g1 a4 t5                5         1 0.0911269 0.0138364 0.0673963 0.1221191
## p g1 a5 t6                6         1 0.0911269 0.0138364 0.0673963 0.1221191
## p g1 a6 t7                7         1 0.0911269 0.0138364 0.0673963 0.1221191
## p g1 a7 t8                8         1 0.0911269 0.0138364 0.0673963 0.1221191
## p g1 a8 t9                9         1 0.0911269 0.0138364 0.0673963 0.1221191
## p g1 a9 t10              10         1 0.0911269 0.0138364 0.0673963 0.1221191
## p g1 a10 t11             11         1 0.0911269 0.0138364 0.0673963 0.1221191
## p g1 a11 t12             12         1 0.0911269 0.0138364 0.0673963 0.1221191
## p g1 a12 t13             13         1 0.0911269 0.0138364 0.0673963 0.1221191
## p g1 a13 t14             14         1 0.0911269 0.0138364 0.0673963 0.1221191
## p g1 a14 t15             15         1 0.0911269 0.0138364 0.0673963 0.1221191
## p g1 a15 t16             16         1 0.0911269 0.0138364 0.0673963 0.1221191
##              fixed    note group age time Age Time
## p g1 a0 t1                     1   0    1   0    0
## p g1 a1 t2                     1   1    2   1    1
## p g1 a2 t3                     1   2    3   2    2
## p g1 a3 t4                     1   3    4   3    3
## p g1 a4 t5                     1   4    5   4    4
## p g1 a5 t6                     1   5    6   5    5
## p g1 a6 t7                     1   6    7   6    6
## p g1 a7 t8                     1   7    8   7    7
## p g1 a8 t9                     1   8    9   8    8
## p g1 a9 t10                    1   9   10   9    9
## p g1 a10 t11                   1  10   11  10   10
## p g1 a11 t12                   1  11   12  11   11
## p g1 a12 t13                   1  12   13  12   12
## p g1 a13 t14                   1  13   14  13   13
## p g1 a14 t15                   1  14   15  14   14
## p g1 a15 t16                   1  15   16  15   15
# collect models and make AICc table
model.set <- RMark::collect.models( type=NULL)
model.set
##                                                                                                              model
## 9                                                                                   p(~1)Psi(~freshwater + icats1)
## 10                                                                       p(~1)Psi(~freshwater + icats1 + Rabbitat)
## 3           p(~1)Psi(~HumanTrail + Rabbitat + dist_dev_z + freshwater + salt_butt + hectares_z + LiDar_z + icats1)
## 1  p(~HumanTrail)Psi(~HumanTrail + Rabbitat + dist_dev_z + freshwater + salt_butt + hectares_z + LiDar_z + icats1)
## 6                                                                                            p(~1)Psi(~freshwater)
## 7                                                                                                p(~1)Psi(~icats1)
## 5                                                                                              p(~1)Psi(~Rabbitat)
## 4                                                                                            p(~1)Psi(~dist_dev_z)
## 8                                                                                            p(~1)Psi(~HumanTrail)
## 2                                                                                            p(~HumanTrail)Psi(~1)
##    npar     AICc DeltaAICc       weight Deviance
## 9     4 425.4081  0.000000 6.088512e-01 416.9018
## 10    5 427.6304  2.222322 2.004196e-01 416.8612
## 3    10 428.2138  2.805710 1.497128e-01 405.2001
## 1    11 430.8569  5.448788 3.993208e-02 405.1902
## 6     3 438.7914 13.383351 7.557070e-04 432.4914
## 7     3 440.4940 15.085891 3.225905e-04 434.1940
## 5     3 448.6904 23.282351 5.355659e-06 442.3904
## 4     3 454.6872 29.279141 2.670708e-07 448.3872
## 8     3 455.1339 29.725791 2.136179e-07 448.8339
## 2     3 455.1881 29.779971 2.079087e-07 448.8881
# model averaging in the usual way
RMark::model.average(model.set, "Psi")
##              par.index  estimate        se fixed    note group age time Age
## Psi g1 a0 t1        17 0.5939216 0.2463569                   1   0    1   0
##              Time
## Psi g1 a0 t1    0
RMark::model.average(model.set, "p")
##              par.index   estimate         se fixed    note group age time Age
## p g1 a0 t1           1 0.09050204 0.01347597                   1   0    1   0
## p g1 a1 t2           2 0.09050204 0.01347597                   1   1    2   1
## p g1 a2 t3           3 0.09050204 0.01347597                   1   2    3   2
## p g1 a3 t4           4 0.09050204 0.01347597                   1   3    4   3
## p g1 a4 t5           5 0.09050204 0.01347597                   1   4    5   4
## p g1 a5 t6           6 0.09050204 0.01347597                   1   5    6   5
## p g1 a6 t7           7 0.09050204 0.01347597                   1   6    7   6
## p g1 a7 t8           8 0.09050204 0.01347597                   1   7    8   7
## p g1 a8 t9           9 0.09050204 0.01347597                   1   8    9   8
## p g1 a9 t10         10 0.09050204 0.01347597                   1   9   10   9
## p g1 a10 t11        11 0.09050204 0.01347597                   1  10   11  10
## p g1 a11 t12        12 0.09050204 0.01347597                   1  11   12  11
## p g1 a12 t13        13 0.09050204 0.01347597                   1  12   13  12
## p g1 a13 t14        14 0.09050204 0.01347597                   1  13   14  13
## p g1 a14 t15        15 0.09050204 0.01347597                   1  14   15  14
## p g1 a15 t16        16 0.09050204 0.01347597                   1  15   16  15
##              Time
## p g1 a0 t1      0
## p g1 a1 t2      1
## p g1 a2 t3      2
## p g1 a3 t4      3
## p g1 a4 t5      4
## p g1 a5 t6      5
## p g1 a6 t7      6
## p g1 a7 t8      7
## p g1 a8 t9      8
## p g1 a9 t10     9
## p g1 a10 t11   10
## p g1 a11 t12   11
## p g1 a12 t13   12
## p g1 a13 t14   13
## p g1 a14 t15   14
## p g1 a15 t16   15
# find occupancy for combination of freshwater and icats1
all.ddl <- make.design.data(rabbit.data)
all.ddl$Psi
##   par.index model.index group age time Age Time
## 1         1          17     1   0    1   0    0
Temp.df <- expand.grid(freshwater=c(0,1), icats1=0:4)
model.fits[[9]]$results$beta
##                   estimate        se        lcl        ucl
## p:(Intercept)   -2.2999524 0.1670603 -2.6273906 -1.9725142
## Psi:(Intercept)  0.6619266 0.7786362 -0.8642005  2.1880536
## Psi:freshwater   5.6681064 3.2987674 -0.7974778 12.1336910
## Psi:icats1      -1.8492627 0.8176438 -3.4518445 -0.2466809
pred.psi <- covariate.predictions(model.fits[[9]], indices=17, data=Temp.df)
head(pred.psi$estimates)
##   vcv.index model.index par.index freshwater icats1   estimate         se
## 1         1           2        17          0      0 0.65969304 0.17480238
## 2         2           2        17          1      0 0.99822119 0.00672987
## 3         3           2        17          0      1 0.23373571 0.09529901
## 4         4           2        17          1      1 0.98880213 0.03445483
## 5         5           2        17          0      2 0.04579958 0.04977129
## 6         6           2        17          1      2 0.93286203 0.15767693
##           lcl       ucl fixed
## 1 0.296468349 0.8991690      
## 2 0.250032137 0.9999989      
## 3 0.097070014 0.4639477      
## 4 0.165459572 0.9999746      
## 5 0.005123596 0.3090775      
## 6 0.090887192 0.9994824
ggplot(data=pred.psi$estimates, aes(x=icats1, y=estimate, color=as.factor(freshwater)))+
   ggtitle("Estimated rabbit occupancy as a function of cats seen at a site")+
   geom_point()+
   geom_line()+
   geom_ribbon(aes(ymin=lcl, ymax=ucl), alpha=0.1)

#####################################################################
#####################################################################
#####################################################################
# Next model static occupancy for the cats
# See Tables S2 and S3 of the paper for dynamic occupancy model

global.covar.vars <- c("HumanTrail","Rabbitat","dist_dev_z","freshwater","salt_butt","hectares_z","LiDar_z")
setdiff(global.covar.vars, names(input.data))
## character(0)
cat.detect.vars <- c("Cats.2013.2014", paste0("X.",31:45))
cat.input.history <- input.data[, cat.detect.vars]

# do some basic checks on your data 
# e.g. check number of sites; number of visits etc
nrow(cat.input.history)
## [1] 84
ncol(cat.input.history)
## [1] 16
range(cat.input.history, na.rm=TRUE)
## [1] 0 1
sum(is.na(cat.input.history))
## [1] 52
sum(cat.input.history, na.rm=TRUE)
## [1] 163
other.covar.vars <- c("Total.CatCaps_2013_14")  # number of cats detected
setdiff(other.covar.vars, names(input.data))
## character(0)
site.covar <- input.data[, c(global.covar.vars,other.covar.vars)]
row.names(site.covar) <- NULL
head(site.covar)
##   HumanTrail Rabbitat dist_dev_z freshwater salt_butt hectares_z LiDar_z
## 1          0        1       1.05          0         1      -0.74   -0.35
## 2          0        1      -0.83          1         0      -0.78   -0.88
## 3          0        1       0.12          1         0      -0.78   -1.13
## 4          0        1       0.00          1         0      -0.78   -0.84
## 5          1        1       2.20          0         0       0.51   -0.32
## 6          1        0       1.02          0         0       1.84   -0.07
##   Total.CatCaps_2013_14
## 1                     0
## 2                     1
## 3                     0
## 4                     1
## 5                     0
## 6                     1
#Format the capture history to be used by RMark and deal with missing values
input.history <- data.frame(freq=1,
                            ch=apply(cat.input.history,1,paste, collapse=""), stringsAsFactors=FALSE)
head(input.history,n=20)
##    freq                ch
## 1     1  0000000000000000
## 2     1  0000000000101000
## 3     1  0000000000000000
## 4     1  0000000000000000
## 5     1  0000000000000000
## 6     1  0000000000000000
## 7     1  0000000000000000
## 8     1  0001010001000000
## 9     1  0000000000000000
## 10    1  0000000000000000
## 11    1  0000010000000100
## 12    1  0000000000000000
## 13    1  0100001000000000
## 14    1  1010000001001010
## 15    1  0000000000000000
## 16    1  0100000000000000
## 17    1  0000000001000000
## 18    1  0000000000000000
## 19    1  0001000000000000
## 20    1 000000000000000NA
input.history$ch <- gsub("NA",".",input.history$ch, fixed=TRUE)
head(input.history,n=20)
##    freq               ch
## 1     1 0000000000000000
## 2     1 0000000000101000
## 3     1 0000000000000000
## 4     1 0000000000000000
## 5     1 0000000000000000
## 6     1 0000000000000000
## 7     1 0000000000000000
## 8     1 0001010001000000
## 9     1 0000000000000000
## 10    1 0000000000000000
## 11    1 0000010000000100
## 12    1 0000000000000000
## 13    1 0100001000000000
## 14    1 1010000001001010
## 15    1 0000000000000000
## 16    1 0100000000000000
## 17    1 0000000001000000
## 18    1 0000000000000000
## 19    1 0001000000000000
## 20    1 000000000000000.
#Add site covariates to input history
input.history = cbind(input.history,site.covar)
head(input.history)
##   freq               ch HumanTrail Rabbitat dist_dev_z freshwater salt_butt
## 1    1 0000000000000000          0        1       1.05          0         1
## 2    1 0000000000101000          0        1      -0.83          1         0
## 3    1 0000000000000000          0        1       0.12          1         0
## 4    1 0000000000000000          0        1       0.00          1         0
## 5    1 0000000000000000          1        1       2.20          0         0
## 6    1 0000000000000000          1        0       1.02          0         0
##   hectares_z LiDar_z Total.CatCaps_2013_14
## 1      -0.74   -0.35                     0
## 2      -0.78   -0.88                     1
## 3      -0.78   -1.13                     0
## 4      -0.78   -0.84                     1
## 5       0.51   -0.32                     0
## 6       1.84   -0.07                     1
# With 16 detections visits, look at the naive occupancy vs. the different covariates
input.history$CatCaps <- as.numeric(input.history$Total.CatCaps_2013_14>0)

prop.table(xtabs(~CatCaps+HumanTrail, data=input.history, exclude=NULL, na.action=na.pass), margin=2)
##        HumanTrail
## CatCaps         0         1
##       0 0.6290323 0.3636364
##       1 0.3709677 0.6363636
prop.table(xtabs(~CatCaps+Rabbitat,   data=input.history, exclude=NULL, na.action=na.pass), margin=2)
##        Rabbitat
## CatCaps         0         1
##       0 0.4400000 0.6101695
##       1 0.5600000 0.3898305
prop.table(xtabs(~CatCaps+freshwater, data=input.history, exclude=NULL, na.action=na.pass), margin=2)
##        freshwater
## CatCaps         0         1
##       0 0.5614035 0.5555556
##       1 0.4385965 0.4444444
prop.table(xtabs(~CatCaps+salt_butt,  data=input.history, exclude=NULL, na.action=na.pass), margin=2)
##        salt_butt
## CatCaps         0         1
##       0 0.5333333 0.7777778
##       1 0.4666667 0.2222222
xtabs(~freshwater+salt_butt,   data=input.history, exclude=NULL, na.action=na.pass)
##           salt_butt
## freshwater  0  1
##          0 48  9
##          1 27  0
#Create the RMark data structure

cat.data <- process.data(data=input.history, 
                                model="Occupancy")
cat.data
## $data
##    freq               ch HumanTrail Rabbitat dist_dev_z freshwater salt_butt
## 1     1 0000000000000000          0        1       1.05          0         1
## 2     1 0000000000101000          0        1      -0.83          1         0
## 3     1 0000000000000000          0        1       0.12          1         0
## 4     1 0000000000000000          0        1       0.00          1         0
## 5     1 0000000000000000          1        1       2.20          0         0
## 6     1 0000000000000000          1        0       1.02          0         0
## 7     1 0000000000000000          0        1      -0.35          0         0
## 8     1 0001010001000000          0        0       1.00          0         0
## 9     1 0000000000000000          0        1       0.98          0         0
## 10    1 0000000000000000          0        1      -0.24          0         0
## 11    1 0000010000000100          0        0       2.18          0         0
## 12    1 0000000000000000          1        1       0.50          0         0
## 13    1 0100001000000000          0        1       0.40          0         0
## 14    1 1010000001001010          0        0      -0.34          0         0
## 15    1 0000000000000000          0        1       1.13          0         0
## 16    1 0100000000000000          0        0       0.29          0         0
## 17    1 0000000001000000          0        0       1.61          0         0
## 18    1 0000000000000000          0        0       0.97          0         0
## 19    1 0001000000000000          0        0      -0.38          0         0
## 20    1 000000000000000.          0        1       1.38          1         0
## 21    1 000000000000000.          0        1       0.69          1         0
## 22    1 000100000000000.          0        0       0.21          0         0
## 23    1 0000000010100011          0        1      -1.01          1         0
## 24    1 0001000000001101          0        1      -0.48          1         0
## 25    1 000000111000010.          0        0      -0.08          0         0
## 26    1 0000001000000001          0        1      -0.14          0         0
## 27    1 0000000000000000          0        1       0.06          1         0
## 28    1 0000000000000000          0        0      -0.79          0         0
## 29    1 1000010000100001          1        0       1.59          0         0
## 30    1 000000000000000.          0        1       1.68          0         0
## 31    1 000000000000000.          0        1       2.08          0         1
## 32    1 001000000000000.          0        0      -0.72          0         0
## 33    1 100000000000000.          1        1      -0.54          0         1
## 34    1 000000000000000.          0        1       0.41          1         0
## 35    1 0000000100000000          0        1      -1.13          1         0
## 36    1 001010101100000.          0        1      -0.85          1         0
## 37    1 100000101001000.          0        1      -0.93          1         0
## 38    1 0000000000000000          0        1      -0.95          1         0
## 39    1 000000000000000.          0        1      -0.76          1         0
## 40    1 001100001001000.          0        1      -0.31          1         0
## 41    1 1000000000000000          0        1      -0.01          1         0
## 42    1 0000001000000000          0        0      -1.01          0         0
## 43    1 0010000000000000          0        1      -0.54          1         0
## 44    1 0000000000100000          0        1      -0.96          0         0
## 45    1 0000000010000001          0        0      -0.85          0         0
## 46    1 100010000000000.          0        1      -0.96          0         1
## 47    1 000000000000000.          0        1      -0.49          1         0
## 48    1 010001000010000.          1        1       2.24          1         0
## 49    1 000101010010000.          0        0      -0.69          0         0
## 50    1 000000000000001.          1        0       0.06          0         0
## 51    1 000000010000100.          1        0       0.38          0         0
## 52    1 010000001000000.          1        1       1.26          0         0
## 53    1 000000010000000.          1        0       0.38          0         0
## 54    1 011011110010111.          0        1      -0.85          0         0
## 55    1 010001100001001.          0        1      -0.57          0         0
## 56    1 010110000101010.          0        1      -0.98          0         0
## 57    1 000000000100000.          1        1       1.22          0         1
## 58    1 000000000001000.          1        1       1.62          0         1
## 59    1 000000000000000.          1        1       0.71          0         0
## 60    1 000000000000000.          0        0      -0.59          0         0
## 61    1 000000010000000.          0        1      -0.82          0         0
## 62    1 000010100100000.          0        1       0.22          0         0
## 63    1 000000000000000.          0        1      -0.75          1         0
## 64    1 000100000010100.          0        1      -0.47          1         0
## 65    1 000000000000100.          1        1       0.34          0         1
## 66    1 000001000000000.          1        1      -0.40          1         0
## 67    1 000010000000000.          0        1      -0.29          1         0
## 68    1 000010000000000.          1        1       0.18          1         0
## 69    1 010111110111011.          0        0      -0.70          0         0
## 70    1 001000010000001.          0        1      -0.59          0         0
## 71    1 001101000000100.          0        0      -0.87          0         0
## 72    1 000000000000000.          0        1      -0.59          1         0
## 73    1 100010001100001.          1        1      -0.65          0         0
## 74    1 001000101110111.          0        0      -0.81          0         0
## 75    1 000000000000000.          0        1       2.88          0         0
## 76    1 010001000101010.          1        1       2.65          0         0
## 77    1 000000001001000.          1        0       0.45          0         0
## 78    1 000000000000000.          0        1      -0.26          0         0
## 79    1 000101001000000.          0        1      -0.68          1         0
## 80    1 000011100011011.          1        1      -0.75          0         0
## 81    1 000000000000000.          0        1      -0.15          1         0
## 82    1 000000000000000.          1        1       0.26          0         1
## 83    1 000000000010000.          1        1       0.03          0         1
## 84    1 010011001100110.          0        0      -0.96          0         0
##    hectares_z LiDar_z Total.CatCaps_2013_14 CatCaps
## 1       -0.74   -0.35                     0       0
## 2       -0.78   -0.88                     1       1
## 3       -0.78   -1.13                     0       0
## 4       -0.78   -0.84                     1       1
## 5        0.51   -0.32                     0       0
## 6        1.84   -0.07                     1       1
## 7        0.51   -0.33                     1       1
## 8        0.51    0.43                     0       0
## 9        1.84   -0.35                     0       0
## 10       1.84    0.09                     0       0
## 11      -0.71   -0.21                     2       1
## 12       0.38   -0.50                     0       0
## 13       0.38    1.81                     0       0
## 14       1.84    1.47                     0       0
## 15       1.84   -0.86                     0       0
## 16       0.38    1.62                     0       0
## 17       1.84    0.11                     0       0
## 18       0.51    1.28                     0       0
## 19       0.51    1.00                     0       0
## 20      -0.78   -0.80                     0       0
## 21      -1.38   -0.82                     0       0
## 22       0.51    1.58                     0       0
## 23      -0.78   -0.86                     0       0
## 24      -0.78   -1.17                     0       0
## 25       1.84    2.23                     0       0
## 26       0.38    0.61                     0       0
## 27      -1.12   -0.92                     1       1
## 28       1.84    0.58                     0       0
## 29      -0.71    0.54                     7       1
## 30      -1.21   -0.89                     0       0
## 31      -1.09   -1.05                     0       0
## 32      -1.01    0.88                     0       0
## 33      -1.31   -1.76                     0       0
## 34       0.18   -1.12                     1       1
## 35      -0.03   -1.24                     2       1
## 36       0.18   -0.77                     0       0
## 37       0.18   -0.44                     0       0
## 38       0.18   -0.66                     0       0
## 39      -0.03   -0.67                     0       0
## 40       0.18   -1.23                     0       0
## 41       0.18   -1.03                     0       0
## 42       1.84    2.33                     0       0
## 43      -0.03   -1.17                     1       1
## 44      -1.49   -0.58                     0       0
## 45      -1.22   -0.07                     2       1
## 46      -1.28   -0.42                     1       1
## 47      -0.95   -0.47                     3       1
## 48      -0.58   -0.20                     3       1
## 49       0.54    0.69                     1       1
## 50       0.54    1.96                     3       1
## 51       1.95    0.59                     4       1
## 52       1.95   -0.09                     3       1
## 53       0.54    2.65                     2       1
## 54      -1.18   -0.69                     5       1
## 55      -1.18   -0.02                     3       1
## 56      -1.28    0.13                     1       1
## 57      -1.08   -1.22                     0       0
## 58      -1.08   -0.65                     3       1
## 59      -1.13   -0.38                     1       1
## 60       1.95    2.10                     2       1
## 61       1.95   -0.61                     0       0
## 62      -0.80    1.24                     0       0
## 63       0.14   -1.26                     0       0
## 64       0.14   -1.11                     6       1
## 65      -1.15   -0.97                     0       0
## 66       0.36   -0.51                     7       1
## 67       0.36   -0.95                     2       1
## 68       0.14   -0.92                     0       0
## 69       0.19    0.99                    16       1
## 70       0.19    0.16                     0       0
## 71       0.19    0.09                    10       1
## 72       0.14   -0.79                     1       1
## 73       0.19    0.24                     5       1
## 74       0.19    0.32                    15       1
## 75       0.67   -0.35                     0       0
## 76       1.95    1.34                     8       1
## 77       0.54    1.59                     1       1
## 78      -1.01   -0.26                     0       0
## 79       0.14   -1.05                     0       0
## 80      -0.80    0.79                     1       1
## 81       0.36   -0.43                     0       0
## 82      -0.98   -1.24                     0       0
## 83      -1.08   -0.96                     0       0
## 84       0.19    0.70                     5       1
## 
## $model
## [1] "Occupancy"
## 
## $mixtures
## [1] 1
## 
## $freq
##    group1
## 1       1
## 2       1
## 3       1
## 4       1
## 5       1
## 6       1
## 7       1
## 8       1
## 9       1
## 10      1
## 11      1
## 12      1
## 13      1
## 14      1
## 15      1
## 16      1
## 17      1
## 18      1
## 19      1
## 20      1
## 21      1
## 22      1
## 23      1
## 24      1
## 25      1
## 26      1
## 27      1
## 28      1
## 29      1
## 30      1
## 31      1
## 32      1
## 33      1
## 34      1
## 35      1
## 36      1
## 37      1
## 38      1
## 39      1
## 40      1
## 41      1
## 42      1
## 43      1
## 44      1
## 45      1
## 46      1
## 47      1
## 48      1
## 49      1
## 50      1
## 51      1
## 52      1
## 53      1
## 54      1
## 55      1
## 56      1
## 57      1
## 58      1
## 59      1
## 60      1
## 61      1
## 62      1
## 63      1
## 64      1
## 65      1
## 66      1
## 67      1
## 68      1
## 69      1
## 70      1
## 71      1
## 72      1
## 73      1
## 74      1
## 75      1
## 76      1
## 77      1
## 78      1
## 79      1
## 80      1
## 81      1
## 82      1
## 83      1
## 84      1
## 
## $nocc
## [1] 16
## 
## $nocc.secondary
## NULL
## 
## $time.intervals
##  [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 
## $begin.time
## [1] 1
## 
## $age.unit
## [1] 1
## 
## $initial.ages
## [1] 0
## 
## $group.covariates
## NULL
## 
## $nstrata
## [1] 1
## 
## $strata.labels
## NULL
## 
## $counts
## NULL
## 
## $reverse
## [1] FALSE
## 
## $areas
## NULL
## 
## $events
## NULL
# all time-specific covariates must be added to the ddl in the loop below


# Get the parameter names
# What are the parameter names for Single Season Single Species models
setup.parameters("Occupancy", check=TRUE)
## [1] "p"   "Psi"
# The top model is psi(global), gamma(ind change in cats) epsilon (dot) p(humtrail)
# If you look at the supplemental table for model 20 you see that
# this is psi(humtrail+catat+devel+fresh+salt_butt+patch+LiDar)

# Notice the commas between the column and the placement of the quotes

global <- paste0("~",paste0(global.covar.vars, collapse="+"),collapse="")

model.list.csv <- textConnection("
p,     Psi,                       model.type, comment
~1,   ~global,                    Occupancy, (15) Table S2
~1,            ~dist_dev_z,          Occupancy,
~1,            ~Rabbitat,            Occupancy,
~1,            ~freshwater,          Occupancy,
~1,            ~HumanTrail,          Occupancy,
~1,            ~freshwater+Rabbitat, Occupancy,
~1,            ~1,                   Occupancy,
~1,   ~hectares_z+dist_dev_z,                   Occupancy")


model.list <- read.csv(model.list.csv, header=TRUE, as.is=TRUE, strip.white=TRUE)
model.list$model.number <- 1:nrow(model.list)
model.list
##    p                    Psi model.type       comment model.number
## 1 ~1                ~global  Occupancy (15) Table S2            1
## 2 ~1            ~dist_dev_z  Occupancy                          2
## 3 ~1              ~Rabbitat  Occupancy                          3
## 4 ~1            ~freshwater  Occupancy                          4
## 5 ~1            ~HumanTrail  Occupancy                          5
## 6 ~1   ~freshwater+Rabbitat  Occupancy                          6
## 7 ~1                     ~1  Occupancy                          7
## 8 ~1 ~hectares_z+dist_dev_z  Occupancy                          8
# substitute for some of the shortcuts
model.list$Psi <- gsub("~global",global, model.list$Psi, )
model.list
##    p                                                                     Psi
## 1 ~1 ~HumanTrail+Rabbitat+dist_dev_z+freshwater+salt_butt+hectares_z+LiDar_z
## 2 ~1                                                             ~dist_dev_z
## 3 ~1                                                               ~Rabbitat
## 4 ~1                                                             ~freshwater
## 5 ~1                                                             ~HumanTrail
## 6 ~1                                                    ~freshwater+Rabbitat
## 7 ~1                                                                      ~1
## 8 ~1                                                  ~hectares_z+dist_dev_z
##   model.type       comment model.number
## 1  Occupancy (15) Table S2            1
## 2  Occupancy                          2
## 3  Occupancy                          3
## 4  Occupancy                          4
## 5  Occupancy                          5
## 6  Occupancy                          6
## 7  Occupancy                          7
## 8  Occupancy                          8
# fit the models
myobs <- ls()
myobs <- myobs[ grepl("m...",myobs,fixed=TRUE)]
cat("Removing ", myobs, "\n")
## Removing  m...001 m...002 m...003 m...004 m...005 m...006 m...007 m...008 m...009 m...010
rm(list=myobs)
cleanup(ask=FALSE)

model.fits <- plyr::dlply(model.list, "model.number", function(x,input.history){
  cat("\n\n***** Starting ", unlist(x), "\n")

  # we need to process the data in the loop to allow for different data types
  # notice that max.visits.per.year and n.season are defined outside the function (bad programming practise)
  input.data<- process.data(data=input.history, model=x$model.type)
  # set up the ddls as needed for time-varying covariates.
  # you need to do this in the loop because different paraemterizations have different ddl structures
  input.ddl <- make.design.data(input.data)
  
  model.parameters=list(
    Psi   =list(formula=as.formula(eval(x$Psi))),
    p     =list(formula=as.formula(eval(x$p)))
  )

  fit <- RMark::mark(input.data, ddl=input.ddl,
                     model=x$model.type,
                     model.parameters=model.parameters,
                     se=TRUE
                     #,brief=TRUE,output=FALSE, delete=TRUE
                     #,invisible=TRUE,output=TRUE  # set for debugging
  )

  mnumber <- paste("m...",formatC(x$model.number, width = 3, format = "d", flag = "0"),sep="")
  assign( mnumber, fit, envir=.GlobalEnv)
  #browser()
  fit
  
},input.history=input.history)
## 
## 
## ***** Starting  ~1 ~HumanTrail+Rabbitat+dist_dev_z+freshwater+salt_butt+hectares_z+LiDar_z Occupancy (15) Table S2 1 
## 
## Output summary for Occupancy model
## Name : p(~1)Psi(~HumanTrail + Rabbitat + dist_dev_z + freshwater + salt_butt + hectares_z + LiDar_z) 
## 
## Npar :  9
## -2lnL:  910.8596
## AICc :  931.2921
## 
## Beta
##                   estimate        se        lcl        ucl
## p:(Intercept)   -1.4852457 0.0966141 -1.6746093 -1.2958821
## Psi:(Intercept)  1.6277101 1.0614847 -0.4528000  3.7082202
## Psi:HumanTrail   1.7847479 0.9309654 -0.0399443  3.6094402
## Psi:Rabbitat    -1.4161672 1.2061910 -3.7803017  0.9479673
## Psi:dist_dev_z  -0.9676143 0.3831503 -1.7185889 -0.2166398
## Psi:freshwater   0.4237291 0.9246481 -1.3885812  2.2360394
## Psi:salt_butt    0.6479538 1.4202754 -2.1357861  3.4316937
## Psi:hectares_z  -0.2622384 0.3811695 -1.0093305  0.4848538
## Psi:LiDar_z      0.8824997 0.6559389 -0.4031406  2.1681400
## 
## 
## Real Parameter p
##              all.diff.index par.index  estimate        se       lcl       ucl
## p g1 a0 t1                1         1 0.1846364 0.0145448 0.1578106 0.2148589
## p g1 a1 t2                2         1 0.1846364 0.0145448 0.1578106 0.2148589
## p g1 a2 t3                3         1 0.1846364 0.0145448 0.1578106 0.2148589
## p g1 a3 t4                4         1 0.1846364 0.0145448 0.1578106 0.2148589
## p g1 a4 t5                5         1 0.1846364 0.0145448 0.1578106 0.2148589
## p g1 a5 t6                6         1 0.1846364 0.0145448 0.1578106 0.2148589
## p g1 a6 t7                7         1 0.1846364 0.0145448 0.1578106 0.2148589
## p g1 a7 t8                8         1 0.1846364 0.0145448 0.1578106 0.2148589
## p g1 a8 t9                9         1 0.1846364 0.0145448 0.1578106 0.2148589
## p g1 a9 t10              10         1 0.1846364 0.0145448 0.1578106 0.2148589
## p g1 a10 t11             11         1 0.1846364 0.0145448 0.1578106 0.2148589
## p g1 a11 t12             12         1 0.1846364 0.0145448 0.1578106 0.2148589
## p g1 a12 t13             13         1 0.1846364 0.0145448 0.1578106 0.2148589
## p g1 a13 t14             14         1 0.1846364 0.0145448 0.1578106 0.2148589
## p g1 a14 t15             15         1 0.1846364 0.0145448 0.1578106 0.2148589
## p g1 a15 t16             16         1 0.1846364 0.0145448 0.1578106 0.2148589
##              fixed
## p g1 a0 t1        
## p g1 a1 t2        
## p g1 a2 t3        
## p g1 a3 t4        
## p g1 a4 t5        
## p g1 a5 t6        
## p g1 a6 t7        
## p g1 a7 t8        
## p g1 a8 t9        
## p g1 a9 t10       
## p g1 a10 t11      
## p g1 a11 t12      
## p g1 a12 t13      
## p g1 a13 t14      
## p g1 a14 t15      
## p g1 a15 t16      
## 
## 
## Real Parameter Psi
##              all.diff.index par.index  estimate        se       lcl       ucl
## Psi g1 a0 t1             17         2 0.7569719 0.0837883 0.5605646 0.8837925
##              fixed
## Psi g1 a0 t1      
## 
## 
## ***** Starting  ~1 ~dist_dev_z Occupancy  2 
## 
## Output summary for Occupancy model
## Name : p(~1)Psi(~dist_dev_z) 
## 
## Npar :  3
## -2lnL:  926.8677
## AICc :  933.1677
## 
## Beta
##                   estimate        se       lcl        ucl
## p:(Intercept)   -1.4800707 0.0941193 -1.664544 -1.2955969
## Psi:(Intercept)  0.8579453 0.2700573  0.328633  1.3872576
## Psi:dist_dev_z  -0.5564771 0.2555065 -1.057270 -0.0556844
## 
## 
## Real Parameter p
##              all.diff.index par.index  estimate        se       lcl      ucl
## p g1 a0 t1                1         1 0.1854167 0.0142155 0.1591529 0.214907
## p g1 a1 t2                2         1 0.1854167 0.0142155 0.1591529 0.214907
## p g1 a2 t3                3         1 0.1854167 0.0142155 0.1591529 0.214907
## p g1 a3 t4                4         1 0.1854167 0.0142155 0.1591529 0.214907
## p g1 a4 t5                5         1 0.1854167 0.0142155 0.1591529 0.214907
## p g1 a5 t6                6         1 0.1854167 0.0142155 0.1591529 0.214907
## p g1 a6 t7                7         1 0.1854167 0.0142155 0.1591529 0.214907
## p g1 a7 t8                8         1 0.1854167 0.0142155 0.1591529 0.214907
## p g1 a8 t9                9         1 0.1854167 0.0142155 0.1591529 0.214907
## p g1 a9 t10              10         1 0.1854167 0.0142155 0.1591529 0.214907
## p g1 a10 t11             11         1 0.1854167 0.0142155 0.1591529 0.214907
## p g1 a11 t12             12         1 0.1854167 0.0142155 0.1591529 0.214907
## p g1 a12 t13             13         1 0.1854167 0.0142155 0.1591529 0.214907
## p g1 a13 t14             14         1 0.1854167 0.0142155 0.1591529 0.214907
## p g1 a14 t15             15         1 0.1854167 0.0142155 0.1591529 0.214907
## p g1 a15 t16             16         1 0.1854167 0.0142155 0.1591529 0.214907
##              fixed
## p g1 a0 t1        
## p g1 a1 t2        
## p g1 a2 t3        
## p g1 a3 t4        
## p g1 a4 t5        
## p g1 a5 t6        
## p g1 a6 t7        
## p g1 a7 t8        
## p g1 a8 t9        
## p g1 a9 t10       
## p g1 a10 t11      
## p g1 a11 t12      
## p g1 a12 t13      
## p g1 a13 t14      
## p g1 a14 t15      
## p g1 a15 t16      
## 
## 
## Real Parameter Psi
##              all.diff.index par.index  estimate        se      lcl       ucl
## Psi g1 a0 t1             17         2 0.6919363 0.0566101 0.571668 0.7907934
##              fixed
## Psi g1 a0 t1      
## 
## 
## ***** Starting  ~1 ~Rabbitat Occupancy  3 
## 
## Output summary for Occupancy model
## Name : p(~1)Psi(~Rabbitat) 
## 
## Npar :  3
## -2lnL:  926.0183
## AICc :  932.3183
## 
## Beta
##                  estimate        se        lcl       ucl
## p:(Intercept)   -1.481175 0.0943624 -1.6661251 -1.296224
## Psi:(Intercept)  1.944027 0.7028725  0.5663969  3.321657
## Psi:Rabbitat    -1.530903 0.7537195 -3.0081933 -0.053613
## 
## 
## Real Parameter p
##              all.diff.index par.index estimate        se       lcl       ucl
## p g1 a0 t1                1         1  0.18525 0.0142424 0.1589415 0.2148011
## p g1 a1 t2                2         1  0.18525 0.0142424 0.1589415 0.2148011
## p g1 a2 t3                3         1  0.18525 0.0142424 0.1589415 0.2148011
## p g1 a3 t4                4         1  0.18525 0.0142424 0.1589415 0.2148011
## p g1 a4 t5                5         1  0.18525 0.0142424 0.1589415 0.2148011
## p g1 a5 t6                6         1  0.18525 0.0142424 0.1589415 0.2148011
## p g1 a6 t7                7         1  0.18525 0.0142424 0.1589415 0.2148011
## p g1 a7 t8                8         1  0.18525 0.0142424 0.1589415 0.2148011
## p g1 a8 t9                9         1  0.18525 0.0142424 0.1589415 0.2148011
## p g1 a9 t10              10         1  0.18525 0.0142424 0.1589415 0.2148011
## p g1 a10 t11             11         1  0.18525 0.0142424 0.1589415 0.2148011
## p g1 a11 t12             12         1  0.18525 0.0142424 0.1589415 0.2148011
## p g1 a12 t13             13         1  0.18525 0.0142424 0.1589415 0.2148011
## p g1 a13 t14             14         1  0.18525 0.0142424 0.1589415 0.2148011
## p g1 a14 t15             15         1  0.18525 0.0142424 0.1589415 0.2148011
## p g1 a15 t16             16         1  0.18525 0.0142424 0.1589415 0.2148011
##              fixed
## p g1 a0 t1        
## p g1 a1 t2        
## p g1 a2 t3        
## p g1 a3 t4        
## p g1 a4 t5        
## p g1 a5 t6        
## p g1 a6 t7        
## p g1 a7 t8        
## p g1 a8 t9        
## p g1 a9 t10       
## p g1 a10 t11      
## p g1 a11 t12      
## p g1 a12 t13      
## p g1 a13 t14      
## p g1 a14 t15      
## p g1 a15 t16      
## 
## 
## Real Parameter Psi
##              all.diff.index par.index  estimate       se       lcl       ucl
## Psi g1 a0 t1             17         2 0.7044855 0.060381 0.5745115 0.8080234
##              fixed
## Psi g1 a0 t1      
## 
## 
## ***** Starting  ~1 ~freshwater Occupancy  4 
## 
## Output summary for Occupancy model
## Name : p(~1)Psi(~freshwater) 
## 
## Npar :  3
## -2lnL:  930.1465
## AICc :  936.4465
## 
## Beta
##                   estimate        se        lcl        ucl
## p:(Intercept)   -1.4815439 0.0943966 -1.6665612 -1.2965265
## Psi:(Intercept)  1.0044638 0.3250277  0.3674095  1.6415180
## Psi:freshwater  -0.6784594 0.5220632 -1.7017033  0.3447845
## 
## 
## Real Parameter p
##              all.diff.index par.index  estimate        se       lcl       ucl
## p g1 a0 t1                1         1 0.1851943 0.0142442 0.1588832 0.2147502
## p g1 a1 t2                2         1 0.1851943 0.0142442 0.1588832 0.2147502
## p g1 a2 t3                3         1 0.1851943 0.0142442 0.1588832 0.2147502
## p g1 a3 t4                4         1 0.1851943 0.0142442 0.1588832 0.2147502
## p g1 a4 t5                5         1 0.1851943 0.0142442 0.1588832 0.2147502
## p g1 a5 t6                6         1 0.1851943 0.0142442 0.1588832 0.2147502
## p g1 a6 t7                7         1 0.1851943 0.0142442 0.1588832 0.2147502
## p g1 a7 t8                8         1 0.1851943 0.0142442 0.1588832 0.2147502
## p g1 a8 t9                9         1 0.1851943 0.0142442 0.1588832 0.2147502
## p g1 a9 t10              10         1 0.1851943 0.0142442 0.1588832 0.2147502
## p g1 a10 t11             11         1 0.1851943 0.0142442 0.1588832 0.2147502
## p g1 a11 t12             12         1 0.1851943 0.0142442 0.1588832 0.2147502
## p g1 a12 t13             13         1 0.1851943 0.0142442 0.1588832 0.2147502
## p g1 a13 t14             14         1 0.1851943 0.0142442 0.1588832 0.2147502
## p g1 a14 t15             15         1 0.1851943 0.0142442 0.1588832 0.2147502
## p g1 a15 t16             16         1 0.1851943 0.0142442 0.1588832 0.2147502
##              fixed
## p g1 a0 t1        
## p g1 a1 t2        
## p g1 a2 t3        
## p g1 a3 t4        
## p g1 a4 t5        
## p g1 a5 t6        
## p g1 a6 t7        
## p g1 a7 t8        
## p g1 a8 t9        
## p g1 a9 t10       
## p g1 a10 t11      
## p g1 a11 t12      
## p g1 a12 t13      
## p g1 a13 t14      
## p g1 a14 t15      
## p g1 a15 t16      
## 
## 
## Real Parameter Psi
##              all.diff.index par.index  estimate       se       lcl       ucl
## Psi g1 a0 t1             17         2 0.6870551 0.055529 0.5695938 0.7845837
##              fixed
## Psi g1 a0 t1      
## 
## 
## ***** Starting  ~1 ~HumanTrail Occupancy  5 
## 
## Output summary for Occupancy model
## Name : p(~1)Psi(~HumanTrail) 
## 
## Npar :  3
## -2lnL:  929.9099
## AICc :  936.2099
## 
## Beta
##                   estimate        se        lcl       ucl
## p:(Intercept)   -1.4816925 0.0944098 -1.6667357 -1.296649
## Psi:(Intercept)  0.5754842 0.2823177  0.0221415  1.128827
## Psi:HumanTrail   0.8479414 0.6587810 -0.4432694  2.139152
## 
## 
## Real Parameter p
##              all.diff.index par.index  estimate        se       lcl       ucl
## p g1 a0 t1                1         1 0.1851719 0.0142449 0.1588599 0.2147295
## p g1 a1 t2                2         1 0.1851719 0.0142449 0.1588599 0.2147295
## p g1 a2 t3                3         1 0.1851719 0.0142449 0.1588599 0.2147295
## p g1 a3 t4                4         1 0.1851719 0.0142449 0.1588599 0.2147295
## p g1 a4 t5                5         1 0.1851719 0.0142449 0.1588599 0.2147295
## p g1 a5 t6                6         1 0.1851719 0.0142449 0.1588599 0.2147295
## p g1 a6 t7                7         1 0.1851719 0.0142449 0.1588599 0.2147295
## p g1 a7 t8                8         1 0.1851719 0.0142449 0.1588599 0.2147295
## p g1 a8 t9                9         1 0.1851719 0.0142449 0.1588599 0.2147295
## p g1 a9 t10              10         1 0.1851719 0.0142449 0.1588599 0.2147295
## p g1 a10 t11             11         1 0.1851719 0.0142449 0.1588599 0.2147295
## p g1 a11 t12             12         1 0.1851719 0.0142449 0.1588599 0.2147295
## p g1 a12 t13             13         1 0.1851719 0.0142449 0.1588599 0.2147295
## p g1 a13 t14             14         1 0.1851719 0.0142449 0.1588599 0.2147295
## p g1 a14 t15             15         1 0.1851719 0.0142449 0.1588599 0.2147295
## p g1 a15 t16             16         1 0.1851719 0.0142449 0.1588599 0.2147295
##              fixed
## p g1 a0 t1        
## p g1 a1 t2        
## p g1 a2 t3        
## p g1 a3 t4        
## p g1 a4 t5        
## p g1 a5 t6        
## p g1 a6 t7        
## p g1 a7 t8        
## p g1 a8 t9        
## p g1 a9 t10       
## p g1 a10 t11      
## p g1 a11 t12      
## p g1 a12 t13      
## p g1 a13 t14      
## p g1 a14 t15      
## p g1 a15 t16      
## 
## 
## Real Parameter Psi
##              all.diff.index par.index  estimate        se       lcl       ucl
## Psi g1 a0 t1             17         2 0.6894532 0.0561453 0.5704272 0.7877697
##              fixed
## Psi g1 a0 t1      
## 
## 
## ***** Starting  ~1 ~freshwater+Rabbitat Occupancy  6 
## 
## Output summary for Occupancy model
## Name : p(~1)Psi(~freshwater + Rabbitat) 
## 
## Npar :  4
## -2lnL:  925.9356
## AICc :  934.442
## 
## Beta
##                   estimate        se        lcl        ucl
## p:(Intercept)   -1.4811307 0.0943585 -1.6660733 -1.2961880
## Psi:(Intercept)  1.9439842 0.7028450  0.5664081  3.3215604
## Psi:freshwater  -0.1617186 0.5623827 -1.2639887  0.9405514
## Psi:Rabbitat    -1.4563877 0.7981478 -3.0207575  0.1079820
## 
## 
## Real Parameter p
##              all.diff.index par.index  estimate        se       lcl       ucl
## p g1 a0 t1                1         1 0.1852567 0.0142422 0.1589484 0.2148073
## p g1 a1 t2                2         1 0.1852567 0.0142422 0.1589484 0.2148073
## p g1 a2 t3                3         1 0.1852567 0.0142422 0.1589484 0.2148073
## p g1 a3 t4                4         1 0.1852567 0.0142422 0.1589484 0.2148073
## p g1 a4 t5                5         1 0.1852567 0.0142422 0.1589484 0.2148073
## p g1 a5 t6                6         1 0.1852567 0.0142422 0.1589484 0.2148073
## p g1 a6 t7                7         1 0.1852567 0.0142422 0.1589484 0.2148073
## p g1 a7 t8                8         1 0.1852567 0.0142422 0.1589484 0.2148073
## p g1 a8 t9                9         1 0.1852567 0.0142422 0.1589484 0.2148073
## p g1 a9 t10              10         1 0.1852567 0.0142422 0.1589484 0.2148073
## p g1 a10 t11             11         1 0.1852567 0.0142422 0.1589484 0.2148073
## p g1 a11 t12             12         1 0.1852567 0.0142422 0.1589484 0.2148073
## p g1 a12 t13             13         1 0.1852567 0.0142422 0.1589484 0.2148073
## p g1 a13 t14             14         1 0.1852567 0.0142422 0.1589484 0.2148073
## p g1 a14 t15             15         1 0.1852567 0.0142422 0.1589484 0.2148073
## p g1 a15 t16             16         1 0.1852567 0.0142422 0.1589484 0.2148073
##              fixed
## p g1 a0 t1        
## p g1 a1 t2        
## p g1 a2 t3        
## p g1 a3 t4        
## p g1 a4 t5        
## p g1 a5 t6        
## p g1 a6 t7        
## p g1 a7 t8        
## p g1 a8 t9        
## p g1 a9 t10       
## p g1 a10 t11      
## p g1 a11 t12      
## p g1 a12 t13      
## p g1 a13 t14      
## p g1 a14 t15      
## p g1 a15 t16      
## 
## 
## Real Parameter Psi
##              all.diff.index par.index estimate        se       lcl       ucl
## Psi g1 a0 t1             17         2 0.704551 0.0603981 0.5745312 0.8081084
##              fixed
## Psi g1 a0 t1      
## 
## 
## ***** Starting  ~1 ~1 Occupancy  7 
## 
## Output summary for Occupancy model
## Name : p(~1)Psi(~1) 
## 
## Npar :  2
## -2lnL:  931.8143
## AICc :  935.9624
## 
## Beta
##                   estimate        se        lcl       ucl
## p:(Intercept)   -1.4818738 0.0944267 -1.6669500 -1.296798
## Psi:(Intercept)  0.7703676 0.2531895  0.2741162  1.266619
## 
## 
## Real Parameter p
##              all.diff.index par.index  estimate        se       lcl       ucl
## p g1 a0 t1                1         1 0.1851446 0.0142458 0.1588312 0.2147045
## p g1 a1 t2                2         1 0.1851446 0.0142458 0.1588312 0.2147045
## p g1 a2 t3                3         1 0.1851446 0.0142458 0.1588312 0.2147045
## p g1 a3 t4                4         1 0.1851446 0.0142458 0.1588312 0.2147045
## p g1 a4 t5                5         1 0.1851446 0.0142458 0.1588312 0.2147045
## p g1 a5 t6                6         1 0.1851446 0.0142458 0.1588312 0.2147045
## p g1 a6 t7                7         1 0.1851446 0.0142458 0.1588312 0.2147045
## p g1 a7 t8                8         1 0.1851446 0.0142458 0.1588312 0.2147045
## p g1 a8 t9                9         1 0.1851446 0.0142458 0.1588312 0.2147045
## p g1 a9 t10              10         1 0.1851446 0.0142458 0.1588312 0.2147045
## p g1 a10 t11             11         1 0.1851446 0.0142458 0.1588312 0.2147045
## p g1 a11 t12             12         1 0.1851446 0.0142458 0.1588312 0.2147045
## p g1 a12 t13             13         1 0.1851446 0.0142458 0.1588312 0.2147045
## p g1 a13 t14             14         1 0.1851446 0.0142458 0.1588312 0.2147045
## p g1 a14 t15             15         1 0.1851446 0.0142458 0.1588312 0.2147045
## p g1 a15 t16             16         1 0.1851446 0.0142458 0.1588312 0.2147045
##              fixed
## p g1 a0 t1        
## p g1 a1 t2        
## p g1 a2 t3        
## p g1 a3 t4        
## p g1 a4 t5        
## p g1 a5 t6        
## p g1 a6 t7        
## p g1 a7 t8        
## p g1 a8 t9        
## p g1 a9 t10       
## p g1 a10 t11      
## p g1 a11 t12      
## p g1 a12 t13      
## p g1 a13 t14      
## p g1 a14 t15      
## p g1 a15 t16      
## 
## 
## Real Parameter Psi
##              all.diff.index par.index  estimate        se       lcl       ucl
## Psi g1 a0 t1             17         2 0.6836004 0.0547626 0.5681031 0.7801634
##              fixed
## Psi g1 a0 t1      
## 
## 
## ***** Starting  ~1 ~hectares_z+dist_dev_z Occupancy  8 
## 
## Output summary for Occupancy model
## Name : p(~1)Psi(~hectares_z + dist_dev_z) 
## 
## Npar :  4
## -2lnL:  926.8675
## AICc :  935.3738
## 
## Beta
##                   estimate        se        lcl        ucl
## p:(Intercept)   -1.4800881 0.0941291 -1.6645812 -1.2955950
## Psi:(Intercept)  0.8577813 0.2702743  0.3280437  1.3875189
## Psi:hectares_z   0.0039090 0.2529017 -0.4917783  0.4995963
## Psi:dist_dev_z  -0.5568887 0.2568993 -1.0604114 -0.0533660
## 
## 
## Real Parameter p
##              all.diff.index par.index  estimate        se      lcl       ucl
## p g1 a0 t1                1         1 0.1854141 0.0142169 0.159148 0.2149073
## p g1 a1 t2                2         1 0.1854141 0.0142169 0.159148 0.2149073
## p g1 a2 t3                3         1 0.1854141 0.0142169 0.159148 0.2149073
## p g1 a3 t4                4         1 0.1854141 0.0142169 0.159148 0.2149073
## p g1 a4 t5                5         1 0.1854141 0.0142169 0.159148 0.2149073
## p g1 a5 t6                6         1 0.1854141 0.0142169 0.159148 0.2149073
## p g1 a6 t7                7         1 0.1854141 0.0142169 0.159148 0.2149073
## p g1 a7 t8                8         1 0.1854141 0.0142169 0.159148 0.2149073
## p g1 a8 t9                9         1 0.1854141 0.0142169 0.159148 0.2149073
## p g1 a9 t10              10         1 0.1854141 0.0142169 0.159148 0.2149073
## p g1 a10 t11             11         1 0.1854141 0.0142169 0.159148 0.2149073
## p g1 a11 t12             12         1 0.1854141 0.0142169 0.159148 0.2149073
## p g1 a12 t13             13         1 0.1854141 0.0142169 0.159148 0.2149073
## p g1 a13 t14             14         1 0.1854141 0.0142169 0.159148 0.2149073
## p g1 a14 t15             15         1 0.1854141 0.0142169 0.159148 0.2149073
## p g1 a15 t16             16         1 0.1854141 0.0142169 0.159148 0.2149073
##              fixed
## p g1 a0 t1        
## p g1 a1 t2        
## p g1 a2 t3        
## p g1 a3 t4        
## p g1 a4 t5        
## p g1 a5 t6        
## p g1 a6 t7        
## p g1 a7 t8        
## p g1 a8 t9        
## p g1 a9 t10       
## p g1 a10 t11      
## p g1 a11 t12      
## p g1 a12 t13      
## p g1 a13 t14      
## p g1 a14 t15      
## p g1 a15 t16      
## 
## 
## Real Parameter Psi
##              all.diff.index par.index  estimate        se     lcl       ucl
## Psi g1 a0 t1             17         2 0.6919472 0.0566182 0.57166 0.7908158
##              fixed
## Psi g1 a0 t1
# examine individula model results

model.number <-1

summary(model.fits[[model.number]])
## Output summary for Occupancy model
## Name : p(~1)Psi(~HumanTrail + Rabbitat + dist_dev_z + freshwater + salt_butt + hectares_z + LiDar_z) 
## 
## Npar :  9
## -2lnL:  910.8596
## AICc :  931.2921
## 
## Beta
##                   estimate        se        lcl        ucl
## p:(Intercept)   -1.4852457 0.0966141 -1.6746093 -1.2958821
## Psi:(Intercept)  1.6277101 1.0614847 -0.4528000  3.7082202
## Psi:HumanTrail   1.7847479 0.9309654 -0.0399443  3.6094402
## Psi:Rabbitat    -1.4161672 1.2061910 -3.7803017  0.9479673
## Psi:dist_dev_z  -0.9676143 0.3831503 -1.7185889 -0.2166398
## Psi:freshwater   0.4237291 0.9246481 -1.3885812  2.2360394
## Psi:salt_butt    0.6479538 1.4202754 -2.1357861  3.4316937
## Psi:hectares_z  -0.2622384 0.3811695 -1.0093305  0.4848538
## Psi:LiDar_z      0.8824997 0.6559389 -0.4031406  2.1681400
## 
## 
## Real Parameter p
##          1         2         3         4         5         6         7
##  0.1846364 0.1846364 0.1846364 0.1846364 0.1846364 0.1846364 0.1846364
##          8         9        10        11        12        13        14
##  0.1846364 0.1846364 0.1846364 0.1846364 0.1846364 0.1846364 0.1846364
##         15        16
##  0.1846364 0.1846364
## 
## 
## Real Parameter Psi
##          1
##  0.7569719
model.fits[[model.number]]$results$real
##               estimate        se       lcl       ucl fixed    note
## p g1 a0 t1   0.1846364 0.0145448 0.1578106 0.2148589              
## Psi g1 a0 t1 0.7569719 0.0837883 0.5605646 0.8837925
model.fits[[model.number]]$results$beta
##                   estimate        se        lcl        ucl
## p:(Intercept)   -1.4852457 0.0966141 -1.6746093 -1.2958821
## Psi:(Intercept)  1.6277101 1.0614847 -0.4528000  3.7082202
## Psi:HumanTrail   1.7847479 0.9309654 -0.0399443  3.6094402
## Psi:Rabbitat    -1.4161672 1.2061910 -3.7803017  0.9479673
## Psi:dist_dev_z  -0.9676143 0.3831503 -1.7185889 -0.2166398
## Psi:freshwater   0.4237291 0.9246481 -1.3885812  2.2360394
## Psi:salt_butt    0.6479538 1.4202754 -2.1357861  3.4316937
## Psi:hectares_z  -0.2622384 0.3811695 -1.0093305  0.4848538
## Psi:LiDar_z      0.8824997 0.6559389 -0.4031406  2.1681400
model.fits[[model.number]]$results$derived
## $Occupancy
##    estimate       lcl       ucl
## 1 0.7569719 0.5605646 0.8837925
model.fits[[model.number]]$results$derived$"psi Probability Occupied"
## NULL
model.fits[[model.number]]$results$derived$"lambda Rate of Change"
## NULL
model.fits[[model.number]]$results$derived$"log odds lambda"
## NULL
get.real(model.fits[[model.number]], "Psi", se=TRUE)
##              all.diff.index par.index  estimate        se       lcl       ucl
## Psi g1 a0 t1             17         2 0.7569719 0.0837883 0.5605646 0.8837925
##              fixed    note group age time Age Time
## Psi g1 a0 t1                   1   0    1   0    0
get.real(model.fits[[model.number]], "p",    se=TRUE)
##              all.diff.index par.index  estimate        se       lcl       ucl
## p g1 a0 t1                1         1 0.1846364 0.0145448 0.1578106 0.2148589
## p g1 a1 t2                2         1 0.1846364 0.0145448 0.1578106 0.2148589
## p g1 a2 t3                3         1 0.1846364 0.0145448 0.1578106 0.2148589
## p g1 a3 t4                4         1 0.1846364 0.0145448 0.1578106 0.2148589
## p g1 a4 t5                5         1 0.1846364 0.0145448 0.1578106 0.2148589
## p g1 a5 t6                6         1 0.1846364 0.0145448 0.1578106 0.2148589
## p g1 a6 t7                7         1 0.1846364 0.0145448 0.1578106 0.2148589
## p g1 a7 t8                8         1 0.1846364 0.0145448 0.1578106 0.2148589
## p g1 a8 t9                9         1 0.1846364 0.0145448 0.1578106 0.2148589
## p g1 a9 t10              10         1 0.1846364 0.0145448 0.1578106 0.2148589
## p g1 a10 t11             11         1 0.1846364 0.0145448 0.1578106 0.2148589
## p g1 a11 t12             12         1 0.1846364 0.0145448 0.1578106 0.2148589
## p g1 a12 t13             13         1 0.1846364 0.0145448 0.1578106 0.2148589
## p g1 a13 t14             14         1 0.1846364 0.0145448 0.1578106 0.2148589
## p g1 a14 t15             15         1 0.1846364 0.0145448 0.1578106 0.2148589
## p g1 a15 t16             16         1 0.1846364 0.0145448 0.1578106 0.2148589
##              fixed    note group age time Age Time
## p g1 a0 t1                     1   0    1   0    0
## p g1 a1 t2                     1   1    2   1    1
## p g1 a2 t3                     1   2    3   2    2
## p g1 a3 t4                     1   3    4   3    3
## p g1 a4 t5                     1   4    5   4    4
## p g1 a5 t6                     1   5    6   5    5
## p g1 a6 t7                     1   6    7   6    6
## p g1 a7 t8                     1   7    8   7    7
## p g1 a8 t9                     1   8    9   8    8
## p g1 a9 t10                    1   9   10   9    9
## p g1 a10 t11                   1  10   11  10   10
## p g1 a11 t12                   1  11   12  11   11
## p g1 a12 t13                   1  12   13  12   12
## p g1 a13 t14                   1  13   14  13   13
## p g1 a14 t15                   1  14   15  14   14
## p g1 a15 t16                   1  15   16  15   15
# collect models and make AICc table
model.set <- RMark::collect.models( type=NULL)
model.set
##                                                                                           model
## 1 p(~1)Psi(~HumanTrail + Rabbitat + dist_dev_z + freshwater + salt_butt + hectares_z + LiDar_z)
## 3                                                                           p(~1)Psi(~Rabbitat)
## 2                                                                         p(~1)Psi(~dist_dev_z)
## 6                                                              p(~1)Psi(~freshwater + Rabbitat)
## 8                                                            p(~1)Psi(~hectares_z + dist_dev_z)
## 7                                                                                  p(~1)Psi(~1)
## 5                                                                         p(~1)Psi(~HumanTrail)
## 4                                                                         p(~1)Psi(~freshwater)
##   npar     AICc DeltaAICc     weight Deviance
## 1    9 931.2921  0.000000 0.38679584 910.8596
## 3    3 932.3183  1.026228 0.23154708 926.0183
## 2    3 933.1677  1.875658 0.15142163 926.8677
## 6    4 934.4420  3.149897 0.08007380 925.9356
## 8    4 935.3738  4.081747 0.05025066 926.8675
## 7    2 935.9624  4.670376 0.03743886 348.1174
## 5    3 936.2099  4.917868 0.03308114 929.9099
## 4    3 936.4465  5.154418 0.02939099 930.1465
#####################################################################
#####################################################################
#####################################################################
# Finally  model MultiSpecies, Single Season using the 2013/2014 data
# prior to any manipulation of cats

# This was NOT done in the paper and so there is nothing to compare 
# the results with.

# let us look at the raw data of naive occupancy
xtabs(~RabbitPresence+(icats1>0), data=input.data, exclude=NULL, na.action=na.pass)
##               icats1 > 0
## RabbitPresence FALSE TRUE
##              0    14   36
##              1    16   18
prop.table(xtabs(~RabbitPresence+(icats1>0), data=input.data, exclude=NULL, na.action=na.pass), margin=1)
##               icats1 > 0
## RabbitPresence     FALSE      TRUE
##              0 0.2800000 0.7200000
##              1 0.4705882 0.5294118
prop.table(xtabs(~RabbitPresence+(icats1>0), data=input.data, exclude=NULL, na.action=na.pass), margin=2)
##               icats1 > 0
## RabbitPresence     FALSE      TRUE
##              0 0.4666667 0.6666667
##              1 0.5333333 0.3333333
# MARK wants a 2 "digit" code xy for each visit where 
#     x = 0/1 if species A is not detected/detected
# and y = 0/1 if species B is not detected/detected

# It is not clear if we should make the rabbits or the cats
# the "dominant species", so we should try if both ways.
# The 2*species code is the dominant species
input.history2 <- 1*rabbit.input.history + 2*cat.input.history
colnames(input.history2) <- NULL
input.history2[1:2,]
##                                  
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 1 0 1 0 0 3 0 2 0 1 0
input.chistory <- data.frame(lapply(input.history2, 
                           car::recode, " 0='00'; 1='10';2='01';3='11';", as.numeric=FALSE, as.factor=FALSE),
                           stringsAsFactors=FALSE)
input.history <- data.frame(ch=apply(input.chistory, 1, paste, sep="",collapse=""), freq=1)

# Change any NA to .. in the chapter history
select <- grepl("NA", input.history$ch)
input.history[ select,][1:5,]
##                                  ch freq
## 20 100000000000000000000010000000NA    1
## 21 000000000000000000001000000000NA    1
## 22 000000010000000000000000000000NA    1
## 25 000000000000010101000000000100NA    1
## 30 000000000000000000000000000000NA    1
input.history$ch <- gsub("NA","..", input.history$ch, fixed=TRUE)
input.history[ select,][1:5,]
##                                  ch freq
## 20 100000000000000000000010000000..    1
## 21 000000000000000000001000000000..    1
## 22 000000010000000000000000000000..    1
## 25 000000000000010101000000000100..    1
## 30 000000000000000000000000000000..    1
other.covar.vars <- NULL  # 
setdiff(other.covar.vars, names(input.data))
## NULL
site.covar <- input.data[, c(global.covar.vars,other.covar.vars)]
row.names(site.covar) <- NULL
head(site.covar)
##   HumanTrail Rabbitat dist_dev_z freshwater salt_butt hectares_z LiDar_z
## 1          0        1       1.05          0         1      -0.74   -0.35
## 2          0        1      -0.83          1         0      -0.78   -0.88
## 3          0        1       0.12          1         0      -0.78   -1.13
## 4          0        1       0.00          1         0      -0.78   -0.84
## 5          1        1       2.20          0         0       0.51   -0.32
## 6          1        0       1.02          0         0       1.84   -0.07
#Add site covariates to input history
input.history = cbind(input.history,site.covar)
head(input.history)
##                                 ch freq HumanTrail Rabbitat dist_dev_z
## 1 00000000000000000000000000000000    1          0        1       1.05
## 2 00000000001000100000110001001000    1          0        1      -0.83
## 3 00100000000000000010001010100010    1          0        1       0.12
## 4 10000000000000000000000000000000    1          0        1       0.00
## 5 00100000000000000000000000000000    1          1        1       2.20
## 6 00001000000000000000000010000000    1          1        0       1.02
##   freshwater salt_butt hectares_z LiDar_z
## 1          0         1      -0.74   -0.35
## 2          1         0      -0.78   -0.88
## 3          1         0      -0.78   -1.13
## 4          1         0      -0.78   -0.84
## 5          0         0       0.51   -0.32
## 6          0         0       1.84   -0.07
catrabbit.data <- process.data(data=input.history,
                         model="2SpecConOccup")  # this parameterization is more stable


# are there any time-specific covariates? If so add them to the ddl's
catrabbit.ddl <- RMark::make.design.data(catrabbit.data)  # need for covariate predictions


# What are the parameter names for Single Season Single Species models
setup.parameters("2SpecConOccup", check=TRUE)
## [1] "PsiA"  "PsiBA" "PsiBa" "pA"    "pB"    "rA"    "rBA"   "rBa"
# Use the psiAB parameterization 
#    Parameters of the model are 
#        psiA  - occupancy probability of species A
#        psiBA - occupancy probability of species B if species A is present
#        psiBa - occupancy probability of species B if species A is absent
#
#    If species are independent thatn psiBA = psiBa.
#       Alternatively, nu = odds(B|A)/odds(B|a) = 1.
#
#    Detection parameters
#        pA    - probability of detection if A is alone in the site
#        pB    - probability of detection if B is alone in the site
#        rA    - probability of detecting A only given both on the site
#        rBA   - probability of detecting B given that A was detected and both are on the site
#        rBa   - probability of detecting B given that A not detected and both are on the site 
#    Ifspecies do not interact, then
#        rBA = rBa
#    and
#        rho = odds(rBA)/odds(rBa) = 1


setup.parameters("2SpecConOccup", check=TRUE)
## [1] "PsiA"  "PsiBA" "PsiBa" "pA"    "pB"    "rA"    "rBA"   "rBa"
# Get the list of models. NOtice NO equal signs here
model.list.csv <- textConnection("
PsiA,         PsiBA,           PsiBa,             pA,   pB,   rA,   rBA,   rBa
~1,            ~1,              ~1,               ~1,     ~1,  ~1,   ~1,    ~1
~1,            ~1,              ~1,               ~1,     ~1,  ~1,   ~1,    ~SHARE
~1,            ~1,              ~SHARE,           ~1,     ~1,  ~1,   ~1,    ~1
~1,            ~1,              ~SHARE,           ~1,     ~1,  ~1,   ~1,    ~SHARE")


model.list <- read.csv(model.list.csv, header=TRUE, as.is=TRUE, strip.white=TRUE)
model.list$model.number <- 1:nrow(model.list)
model.list
##   PsiA PsiBA  PsiBa pA pB rA rBA    rBa model.number
## 1   ~1    ~1     ~1 ~1 ~1 ~1  ~1     ~1            1
## 2   ~1    ~1     ~1 ~1 ~1 ~1  ~1 ~SHARE            2
## 3   ~1    ~1 ~SHARE ~1 ~1 ~1  ~1     ~1            3
## 4   ~1    ~1 ~SHARE ~1 ~1 ~1  ~1 ~SHARE            4
# fit the models
myobs <- ls()
myobs <- myobs[ grepl("m...",myobs,fixed=TRUE)]
cat("Removing ", myobs, "\n")
## Removing  m...001 m...002 m...003 m...004 m...005 m...006 m...007 m...008
rm(list=myobs)
cleanup(ask=FALSE)


model.fits <- plyr::dlply(model.list, "model.number", function(x,input.data, input.ddl){
  cat("\n\n***** Starting ", unlist(x), "\n")
  #browser()
  model.parameters=list(
    PsiA   =list(formula=as.formula(eval(x$PsiA ))),
    PsiBA  =list(formula=as.formula(eval(x$PsiBA))),
    PsiBa  =list(formula=as.formula(eval(x$PsiBa))),
    pA     =list(formula=as.formula(eval(x$pA ))),
    pB     =list(formula=as.formula(eval(x$pB ))),
    rA     =list(formula=as.formula(eval(x$rA ))),
    rBA    =list(formula=as.formula(eval(x$rBA))),
    rBa    =list(formula=as.formula(eval(x$rBa)))
  )
  if(x$rBa == '~SHARE'){
     model.parameters$rBA =list(formula=as.formula(eval(x$rBA)), share=TRUE)
     model.parameters$rBa = NULL
  }
  if(x$PsiBa == '~SHARE'){
     model.parameters$PsiBA =list(formula=as.formula(eval(x$PsiBA)), share=TRUE)
     model.parameters$PsiBa = NULL
  }
 
  fit <- RMark::mark(input.data, ddl=input.ddl,
                     model="2SpecConOccup",
                     model.parameters=model.parameters
                     #,brief=TRUE,output=FALSE, delete=TRUE
                     #,invisible=TRUE,output=TRUE  # set for debugging
          )
  mnumber <- paste("m...",formatC(x$model.number, width = 3, format = "d", flag = "0"),sep="")
  assign( mnumber, fit, envir=.GlobalEnv)
  #browser()
  fit
  
},input.data=catrabbit.data, input.ddl=catrabbit.ddl)
## 
## 
## ***** Starting  ~1 ~1 ~1 ~1 ~1 ~1 ~1 ~1 1
## 
## Note: only 7 parameters counted of 8 specified parameters
## AICc and parameter count have been adjusted upward
## 
## Output summary for 2SpecConOccup model
## Name : PsiA(~1)PsiBA(~1)PsiBa(~1)pA(~1)pB(~1)rA(~1)rBA(~1)rBa(~1) 
## 
## Npar :  8  (unadjusted=7)
## -2lnL:  1339.072
## AICc :  1356.992  (unadjusted=1354.5455)
## 
## Beta
##                     estimate           se           lcl          ucl
## PsiA:(Intercept)   1.2277412    0.3236003     0.5934846    1.8619978
## PsiBA:(Intercept)  3.0012987    0.9114373     1.2148816    4.7877159
## PsiBa:(Intercept) 11.8791190 3649.8832000 -7141.8921000 7165.6503000
## pA:(Intercept)    -0.9503081    0.6110370    -2.1479407    0.2473245
## pB:(Intercept)    -0.6199148    0.1721175    -0.9572651   -0.2825645
## rA:(Intercept)    -3.0165145    0.1758224    -3.3611264   -2.6719026
## rBA:(Intercept)   -2.0696979    0.4862678    -3.0227829   -1.1166129
## rBa:(Intercept)   -2.7045988    0.1710577    -3.0398719   -2.3693257
## 
## 
## Real Parameter PsiA
##         1
##  0.773423
## 
## 
## Real Parameter PsiBA
##          1
##  0.9526328
## 
## 
## Real Parameter PsiBa
##          1
##  0.9999931
## 
## 
## Real Parameter pA
##          1         2         3         4         5         6         7
##  0.2788229 0.2788229 0.2788229 0.2788229 0.2788229 0.2788229 0.2788229
##          8         9        10        11        12        13        14
##  0.2788229 0.2788229 0.2788229 0.2788229 0.2788229 0.2788229 0.2788229
##         15        16
##  0.2788229 0.2788229
## 
## 
## Real Parameter pB
##          1         2         3         4         5         6         7
##  0.3498008 0.3498008 0.3498008 0.3498008 0.3498008 0.3498008 0.3498008
##          8         9        10        11        12        13        14
##  0.3498008 0.3498008 0.3498008 0.3498008 0.3498008 0.3498008 0.3498008
##         15        16
##  0.3498008 0.3498008
## 
## 
## Real Parameter rA
##          1         2         3         4         5         6         7
##  0.0466854 0.0466854 0.0466854 0.0466854 0.0466854 0.0466854 0.0466854
##          8         9        10        11        12        13        14
##  0.0466854 0.0466854 0.0466854 0.0466854 0.0466854 0.0466854 0.0466854
##         15        16
##  0.0466854 0.0466854
## 
## 
## Real Parameter rBA
##          1         2         3         4         5         6         7
##  0.1120771 0.1120771 0.1120771 0.1120771 0.1120771 0.1120771 0.1120771
##          8         9        10        11        12        13        14
##  0.1120771 0.1120771 0.1120771 0.1120771 0.1120771 0.1120771 0.1120771
##         15        16
##  0.1120771 0.1120771
## 
## 
## Real Parameter rBa
##          1         2         3         4         5         6         7
##  0.0627025 0.0627025 0.0627025 0.0627025 0.0627025 0.0627025 0.0627025
##          8         9        10        11        12        13        14
##  0.0627025 0.0627025 0.0627025 0.0627025 0.0627025 0.0627025 0.0627025
##         15        16
##  0.0627025 0.0627025
## 
## 
## ***** Starting  ~1 ~1 ~1 ~1 ~1 ~1 ~1 ~SHARE 2 
## 
## Output summary for 2SpecConOccup model
## Name : PsiA(~1)PsiBA(~1)PsiBa(~1)pA(~1)pB(~1)rA(~1)rBA(~1)rBa() 
## 
## Npar :  7
## -2lnL:  1340.432
## AICc :  1355.906
## 
## Beta
##                     estimate        se        lcl        ucl
## PsiA:(Intercept)   1.2034609 0.4319049  0.3569271  2.0499946
## PsiBA:(Intercept)  3.0527099 0.8863354  1.3154924  4.7899273
## PsiBa:(Intercept)  3.1648743 5.7647788 -8.1340924 14.4638410
## pA:(Intercept)    -0.9120670 0.5857430 -2.0601233  0.2359894
## pB:(Intercept)    -0.6040225 0.1729063 -0.9429189 -0.2651261
## rA:(Intercept)    -3.0046578 0.1863118 -3.3698289 -2.6394868
## rBA:(Intercept)   -2.6412230 0.1816779 -2.9973117 -2.2851342
## 
## 
## Real Parameter PsiA
##          1
##  0.7691399
## 
## 
## Real Parameter PsiBA
##          1
##  0.9548994
## 
## 
## Real Parameter PsiBa
##          1
##  0.9594908
## 
## 
## Real Parameter pA
##          1         2         3         4         5         6         7
##  0.2865771 0.2865771 0.2865771 0.2865771 0.2865771 0.2865771 0.2865771
##          8         9        10        11        12        13        14
##  0.2865771 0.2865771 0.2865771 0.2865771 0.2865771 0.2865771 0.2865771
##         15        16
##  0.2865771 0.2865771
## 
## 
## Real Parameter pB
##          1         2         3         4         5         6         7
##  0.3534239 0.3534239 0.3534239 0.3534239 0.3534239 0.3534239 0.3534239
##          8         9        10        11        12        13        14
##  0.3534239 0.3534239 0.3534239 0.3534239 0.3534239 0.3534239 0.3534239
##         15        16
##  0.3534239 0.3534239
## 
## 
## Real Parameter rA
##          1         2         3         4         5         6         7
##  0.0472159 0.0472159 0.0472159 0.0472159 0.0472159 0.0472159 0.0472159
##          8         9        10        11        12        13        14
##  0.0472159 0.0472159 0.0472159 0.0472159 0.0472159 0.0472159 0.0472159
##         15        16
##  0.0472159 0.0472159
## 
## 
## Real Parameter rBA
##         1        2        3        4        5        6        7        8
##  0.066532 0.066532 0.066532 0.066532 0.066532 0.066532 0.066532 0.066532
##         9       10       11       12       13       14       15       16
##  0.066532 0.066532 0.066532 0.066532 0.066532 0.066532 0.066532 0.066532
## 
## 
## Real Parameter rBa
##         1        2        3        4        5        6        7        8
##  0.066532 0.066532 0.066532 0.066532 0.066532 0.066532 0.066532 0.066532
##         9       10       11       12       13       14       15       16
##  0.066532 0.066532 0.066532 0.066532 0.066532 0.066532 0.066532 0.066532
## 
## 
## ***** Starting  ~1 ~1 ~SHARE ~1 ~1 ~1 ~1 ~1 3 
## 
## Output summary for 2SpecConOccup model
## Name : PsiA(~1)PsiBA(~1)PsiBa()pA(~1)pB(~1)rA(~1)rBA(~1)rBa(~1) 
## 
## Npar :  7
## -2lnL:  1339.114
## AICc :  1354.588
## 
## Beta
##                     estimate        se        lcl        ucl
## PsiA:(Intercept)   1.1698897 0.3284455  0.5261364  1.8136429
## PsiBA:(Intercept)  3.0093018 0.9163917  1.2131740  4.8054296
## pA:(Intercept)    -0.9451849 0.6101729 -2.1411239  0.2507541
## pB:(Intercept)    -0.6192793 0.1730546 -0.9584664 -0.2800922
## rA:(Intercept)    -3.0009521 0.1739264 -3.3418477 -2.6600564
## rBA:(Intercept)   -2.0710323 0.4860247 -3.0236408 -1.1184238
## rBa:(Intercept)   -2.6871116 0.1747149 -3.0295528 -2.3446704
## 
## 
## Real Parameter PsiA
##          1
##  0.7631251
## 
## 
## Real Parameter PsiBA
##          1
##  0.9529926
## 
## 
## Real Parameter PsiBa
##          1
##  0.9529926
## 
## 
## Real Parameter pA
##          1         2         3         4         5         6         7
##  0.2798542 0.2798542 0.2798542 0.2798542 0.2798542 0.2798542 0.2798542
##          8         9        10        11        12        13        14
##  0.2798542 0.2798542 0.2798542 0.2798542 0.2798542 0.2798542 0.2798542
##         15        16
##  0.2798542 0.2798542
## 
## 
## Real Parameter pB
##          1         2         3         4         5         6         7
##  0.3499454 0.3499454 0.3499454 0.3499454 0.3499454 0.3499454 0.3499454
##          8         9        10        11        12        13        14
##  0.3499454 0.3499454 0.3499454 0.3499454 0.3499454 0.3499454 0.3499454
##         15        16
##  0.3499454 0.3499454
## 
## 
## Real Parameter rA
##          1         2         3         4         5         6         7
##  0.0473829 0.0473829 0.0473829 0.0473829 0.0473829 0.0473829 0.0473829
##          8         9        10        11        12        13        14
##  0.0473829 0.0473829 0.0473829 0.0473829 0.0473829 0.0473829 0.0473829
##         15        16
##  0.0473829 0.0473829
## 
## 
## Real Parameter rBA
##          1         2         3         4         5         6         7
##  0.1119444 0.1119444 0.1119444 0.1119444 0.1119444 0.1119444 0.1119444
##          8         9        10        11        12        13        14
##  0.1119444 0.1119444 0.1119444 0.1119444 0.1119444 0.1119444 0.1119444
##         15        16
##  0.1119444 0.1119444
## 
## 
## Real Parameter rBa
##          1         2         3         4         5         6         7
##  0.0637382 0.0637382 0.0637382 0.0637382 0.0637382 0.0637382 0.0637382
##          8         9        10        11        12        13        14
##  0.0637382 0.0637382 0.0637382 0.0637382 0.0637382 0.0637382 0.0637382
##         15        16
##  0.0637382 0.0637382
## 
## 
## ***** Starting  ~1 ~1 ~SHARE ~1 ~1 ~1 ~1 ~SHARE 4 
## 
## Output summary for 2SpecConOccup model
## Name : PsiA(~1)PsiBA(~1)PsiBa()pA(~1)pB(~1)rA(~1)rBA(~1)rBa() 
## 
## Npar :  6
## -2lnL:  1340.432
## AICc :  1353.523
## 
## Beta
##                    estimate        se        lcl        ucl
## PsiA:(Intercept)   1.197714 0.3300233  0.5508683  1.8445595
## PsiBA:(Intercept)  3.053326 0.8855898  1.3175700  4.7890821
## pA:(Intercept)    -0.911727 0.5854105 -2.0591317  0.2356776
## pB:(Intercept)    -0.603978 0.1729881 -0.9430347 -0.2649214
## rA:(Intercept)    -3.003141 0.1713816 -3.3390484 -2.6672327
## rBA:(Intercept)   -2.639586 0.1636411 -2.9603225 -2.3188495
## 
## 
## Real Parameter PsiA
##          1
##  0.7681179
## 
## 
## Real Parameter PsiBA
##          1
##  0.9549259
## 
## 
## Real Parameter PsiBa
##          1
##  0.9549259
## 
## 
## Real Parameter pA
##          1         2         3         4         5         6         7
##  0.2866466 0.2866466 0.2866466 0.2866466 0.2866466 0.2866466 0.2866466
##          8         9        10        11        12        13        14
##  0.2866466 0.2866466 0.2866466 0.2866466 0.2866466 0.2866466 0.2866466
##         15        16
##  0.2866466 0.2866466
## 
## 
## Real Parameter pB
##          1         2         3         4         5         6         7
##  0.3534341 0.3534341 0.3534341 0.3534341 0.3534341 0.3534341 0.3534341
##          8         9        10        11        12        13        14
##  0.3534341 0.3534341 0.3534341 0.3534341 0.3534341 0.3534341 0.3534341
##         15        16
##  0.3534341 0.3534341
## 
## 
## Real Parameter rA
##          1         2         3         4         5         6         7
##  0.0472842 0.0472842 0.0472842 0.0472842 0.0472842 0.0472842 0.0472842
##          8         9        10        11        12        13        14
##  0.0472842 0.0472842 0.0472842 0.0472842 0.0472842 0.0472842 0.0472842
##         15        16
##  0.0472842 0.0472842
## 
## 
## Real Parameter rBA
##          1         2         3         4         5         6         7
##  0.0666338 0.0666338 0.0666338 0.0666338 0.0666338 0.0666338 0.0666338
##          8         9        10        11        12        13        14
##  0.0666338 0.0666338 0.0666338 0.0666338 0.0666338 0.0666338 0.0666338
##         15        16
##  0.0666338 0.0666338
## 
## 
## Real Parameter rBa
##          1         2         3         4         5         6         7
##  0.0666338 0.0666338 0.0666338 0.0666338 0.0666338 0.0666338 0.0666338
##          8         9        10        11        12        13        14
##  0.0666338 0.0666338 0.0666338 0.0666338 0.0666338 0.0666338 0.0666338
##         15        16
##  0.0666338 0.0666338
# examine individual model results
model.number <-4

summary(model.fits[[model.number]])
## Output summary for 2SpecConOccup model
## Name : PsiA(~1)PsiBA(~1)PsiBa()pA(~1)pB(~1)rA(~1)rBA(~1)rBa() 
## 
## Npar :  6
## -2lnL:  1340.432
## AICc :  1353.523
## 
## Beta
##                    estimate        se        lcl        ucl
## PsiA:(Intercept)   1.197714 0.3300233  0.5508683  1.8445595
## PsiBA:(Intercept)  3.053326 0.8855898  1.3175700  4.7890821
## pA:(Intercept)    -0.911727 0.5854105 -2.0591317  0.2356776
## pB:(Intercept)    -0.603978 0.1729881 -0.9430347 -0.2649214
## rA:(Intercept)    -3.003141 0.1713816 -3.3390484 -2.6672327
## rBA:(Intercept)   -2.639586 0.1636411 -2.9603225 -2.3188495
## 
## 
## Real Parameter PsiA
##          1
##  0.7681179
## 
## 
## Real Parameter PsiBA
##          1
##  0.9549259
## 
## 
## Real Parameter PsiBa
##          1
##  0.9549259
## 
## 
## Real Parameter pA
##          1         2         3         4         5         6         7
##  0.2866466 0.2866466 0.2866466 0.2866466 0.2866466 0.2866466 0.2866466
##          8         9        10        11        12        13        14
##  0.2866466 0.2866466 0.2866466 0.2866466 0.2866466 0.2866466 0.2866466
##         15        16
##  0.2866466 0.2866466
## 
## 
## Real Parameter pB
##          1         2         3         4         5         6         7
##  0.3534341 0.3534341 0.3534341 0.3534341 0.3534341 0.3534341 0.3534341
##          8         9        10        11        12        13        14
##  0.3534341 0.3534341 0.3534341 0.3534341 0.3534341 0.3534341 0.3534341
##         15        16
##  0.3534341 0.3534341
## 
## 
## Real Parameter rA
##          1         2         3         4         5         6         7
##  0.0472842 0.0472842 0.0472842 0.0472842 0.0472842 0.0472842 0.0472842
##          8         9        10        11        12        13        14
##  0.0472842 0.0472842 0.0472842 0.0472842 0.0472842 0.0472842 0.0472842
##         15        16
##  0.0472842 0.0472842
## 
## 
## Real Parameter rBA
##          1         2         3         4         5         6         7
##  0.0666338 0.0666338 0.0666338 0.0666338 0.0666338 0.0666338 0.0666338
##          8         9        10        11        12        13        14
##  0.0666338 0.0666338 0.0666338 0.0666338 0.0666338 0.0666338 0.0666338
##         15        16
##  0.0666338 0.0666338
## 
## 
## Real Parameter rBa
##          1         2         3         4         5         6         7
##  0.0666338 0.0666338 0.0666338 0.0666338 0.0666338 0.0666338 0.0666338
##          8         9        10        11        12        13        14
##  0.0666338 0.0666338 0.0666338 0.0666338 0.0666338 0.0666338 0.0666338
##         15        16
##  0.0666338 0.0666338
model.fits[[model.number]]$results$real
##                 estimate        se       lcl       ucl fixed    note
## PsiA g1 a0 t1  0.7681179 0.0587814 0.6343370 0.8634871              
## PsiBA g1 a0 t1 0.9549259 0.0381179 0.7887771 0.9917486              
## pA g1 a0 t1    0.2866466 0.1197049 0.1131329 0.5586482              
## pB g1 a0 t1    0.3534341 0.0395310 0.2802878 0.4341543              
## rA g1 a0 t1    0.0472842 0.0077205 0.0342556 0.0649348              
## rBA g1 a0 t1   0.0666338 0.0101774 0.0492509 0.0895738
model.fits[[model.number]]$results$beta
##                    estimate        se        lcl        ucl
## PsiA:(Intercept)   1.197714 0.3300233  0.5508683  1.8445595
## PsiBA:(Intercept)  3.053326 0.8855898  1.3175700  4.7890821
## pA:(Intercept)    -0.911727 0.5854105 -2.0591317  0.2356776
## pB:(Intercept)    -0.603978 0.1729881 -0.9430347 -0.2649214
## rA:(Intercept)    -3.003141 0.1713816 -3.3390484 -2.6672327
## rBA:(Intercept)   -2.639586 0.1636411 -2.9603225 -2.3188495
model.fits[[model.number]]$results$derived
## $`Species Interaction Factor`
##   estimate lcl ucl
## 1        1   1   1
## 
## $`Occupancy of Species B`
##    estimate       lcl       ucl
## 1 0.9549259 0.7887771 0.9917486
## 
## $`Occupancy of Both Species`
##    estimate       lcl       ucl
## 1 0.7334956 0.5866224 0.8422204
get.real(model.fits[[model.number]], "PsiA", se=TRUE)
##               all.diff.index par.index  estimate        se      lcl       ucl
## PsiA g1 a0 t1              1         1 0.7681179 0.0587814 0.634337 0.8634871
##               fixed    note group age time Age Time
## PsiA g1 a0 t1                   1   0    1   0    0
get.real(model.fits[[model.number]], "PsiBA", se=TRUE)
##                all.diff.index par.index  estimate        se       lcl       ucl
## PsiBA g1 a0 t1              2         2 0.9549259 0.0381179 0.7887771 0.9917486
##                fixed    note group age time Age Time
## PsiBA g1 a0 t1                   1   0    1   0    0
get.real(model.fits[[model.number]], "PsiBa", se=TRUE)
##                all.diff.index par.index  estimate        se       lcl       ucl
## PsiBa g1 a0 t1              3         2 0.9549259 0.0381179 0.7887771 0.9917486
##                fixed    note group age time Age Time
## PsiBa g1 a0 t1                   1   0    1   0    0
get.real(model.fits[[model.number]], "pA", se=TRUE)
##               all.diff.index par.index  estimate        se       lcl       ucl
## pA g1 a0 t1                4         3 0.2866466 0.1197049 0.1131329 0.5586482
## pA g1 a1 t2                5         3 0.2866466 0.1197049 0.1131329 0.5586482
## pA g1 a2 t3                6         3 0.2866466 0.1197049 0.1131329 0.5586482
## pA g1 a3 t4                7         3 0.2866466 0.1197049 0.1131329 0.5586482
## pA g1 a4 t5                8         3 0.2866466 0.1197049 0.1131329 0.5586482
## pA g1 a5 t6                9         3 0.2866466 0.1197049 0.1131329 0.5586482
## pA g1 a6 t7               10         3 0.2866466 0.1197049 0.1131329 0.5586482
## pA g1 a7 t8               11         3 0.2866466 0.1197049 0.1131329 0.5586482
## pA g1 a8 t9               12         3 0.2866466 0.1197049 0.1131329 0.5586482
## pA g1 a9 t10              13         3 0.2866466 0.1197049 0.1131329 0.5586482
## pA g1 a10 t11             14         3 0.2866466 0.1197049 0.1131329 0.5586482
## pA g1 a11 t12             15         3 0.2866466 0.1197049 0.1131329 0.5586482
## pA g1 a12 t13             16         3 0.2866466 0.1197049 0.1131329 0.5586482
## pA g1 a13 t14             17         3 0.2866466 0.1197049 0.1131329 0.5586482
## pA g1 a14 t15             18         3 0.2866466 0.1197049 0.1131329 0.5586482
## pA g1 a15 t16             19         3 0.2866466 0.1197049 0.1131329 0.5586482
##               fixed    note group age time Age Time
## pA g1 a0 t1                     1   0    1   0    0
## pA g1 a1 t2                     1   1    2   1    1
## pA g1 a2 t3                     1   2    3   2    2
## pA g1 a3 t4                     1   3    4   3    3
## pA g1 a4 t5                     1   4    5   4    4
## pA g1 a5 t6                     1   5    6   5    5
## pA g1 a6 t7                     1   6    7   6    6
## pA g1 a7 t8                     1   7    8   7    7
## pA g1 a8 t9                     1   8    9   8    8
## pA g1 a9 t10                    1   9   10   9    9
## pA g1 a10 t11                   1  10   11  10   10
## pA g1 a11 t12                   1  11   12  11   11
## pA g1 a12 t13                   1  12   13  12   12
## pA g1 a13 t14                   1  13   14  13   13
## pA g1 a14 t15                   1  14   15  14   14
## pA g1 a15 t16                   1  15   16  15   15
get.real(model.fits[[model.number]], "pB", se=TRUE)
##               all.diff.index par.index  estimate       se       lcl       ucl
## pB g1 a0 t1               20         4 0.3534341 0.039531 0.2802878 0.4341543
## pB g1 a1 t2               21         4 0.3534341 0.039531 0.2802878 0.4341543
## pB g1 a2 t3               22         4 0.3534341 0.039531 0.2802878 0.4341543
## pB g1 a3 t4               23         4 0.3534341 0.039531 0.2802878 0.4341543
## pB g1 a4 t5               24         4 0.3534341 0.039531 0.2802878 0.4341543
## pB g1 a5 t6               25         4 0.3534341 0.039531 0.2802878 0.4341543
## pB g1 a6 t7               26         4 0.3534341 0.039531 0.2802878 0.4341543
## pB g1 a7 t8               27         4 0.3534341 0.039531 0.2802878 0.4341543
## pB g1 a8 t9               28         4 0.3534341 0.039531 0.2802878 0.4341543
## pB g1 a9 t10              29         4 0.3534341 0.039531 0.2802878 0.4341543
## pB g1 a10 t11             30         4 0.3534341 0.039531 0.2802878 0.4341543
## pB g1 a11 t12             31         4 0.3534341 0.039531 0.2802878 0.4341543
## pB g1 a12 t13             32         4 0.3534341 0.039531 0.2802878 0.4341543
## pB g1 a13 t14             33         4 0.3534341 0.039531 0.2802878 0.4341543
## pB g1 a14 t15             34         4 0.3534341 0.039531 0.2802878 0.4341543
## pB g1 a15 t16             35         4 0.3534341 0.039531 0.2802878 0.4341543
##               fixed    note group age time Age Time
## pB g1 a0 t1                     1   0    1   0    0
## pB g1 a1 t2                     1   1    2   1    1
## pB g1 a2 t3                     1   2    3   2    2
## pB g1 a3 t4                     1   3    4   3    3
## pB g1 a4 t5                     1   4    5   4    4
## pB g1 a5 t6                     1   5    6   5    5
## pB g1 a6 t7                     1   6    7   6    6
## pB g1 a7 t8                     1   7    8   7    7
## pB g1 a8 t9                     1   8    9   8    8
## pB g1 a9 t10                    1   9   10   9    9
## pB g1 a10 t11                   1  10   11  10   10
## pB g1 a11 t12                   1  11   12  11   11
## pB g1 a12 t13                   1  12   13  12   12
## pB g1 a13 t14                   1  13   14  13   13
## pB g1 a14 t15                   1  14   15  14   14
## pB g1 a15 t16                   1  15   16  15   15
get.real(model.fits[[model.number]], "rA", se=TRUE)
##               all.diff.index par.index  estimate        se       lcl       ucl
## rA g1 a0 t1               36         5 0.0472842 0.0077205 0.0342556 0.0649348
## rA g1 a1 t2               37         5 0.0472842 0.0077205 0.0342556 0.0649348
## rA g1 a2 t3               38         5 0.0472842 0.0077205 0.0342556 0.0649348
## rA g1 a3 t4               39         5 0.0472842 0.0077205 0.0342556 0.0649348
## rA g1 a4 t5               40         5 0.0472842 0.0077205 0.0342556 0.0649348
## rA g1 a5 t6               41         5 0.0472842 0.0077205 0.0342556 0.0649348
## rA g1 a6 t7               42         5 0.0472842 0.0077205 0.0342556 0.0649348
## rA g1 a7 t8               43         5 0.0472842 0.0077205 0.0342556 0.0649348
## rA g1 a8 t9               44         5 0.0472842 0.0077205 0.0342556 0.0649348
## rA g1 a9 t10              45         5 0.0472842 0.0077205 0.0342556 0.0649348
## rA g1 a10 t11             46         5 0.0472842 0.0077205 0.0342556 0.0649348
## rA g1 a11 t12             47         5 0.0472842 0.0077205 0.0342556 0.0649348
## rA g1 a12 t13             48         5 0.0472842 0.0077205 0.0342556 0.0649348
## rA g1 a13 t14             49         5 0.0472842 0.0077205 0.0342556 0.0649348
## rA g1 a14 t15             50         5 0.0472842 0.0077205 0.0342556 0.0649348
## rA g1 a15 t16             51         5 0.0472842 0.0077205 0.0342556 0.0649348
##               fixed    note group age time Age Time
## rA g1 a0 t1                     1   0    1   0    0
## rA g1 a1 t2                     1   1    2   1    1
## rA g1 a2 t3                     1   2    3   2    2
## rA g1 a3 t4                     1   3    4   3    3
## rA g1 a4 t5                     1   4    5   4    4
## rA g1 a5 t6                     1   5    6   5    5
## rA g1 a6 t7                     1   6    7   6    6
## rA g1 a7 t8                     1   7    8   7    7
## rA g1 a8 t9                     1   8    9   8    8
## rA g1 a9 t10                    1   9   10   9    9
## rA g1 a10 t11                   1  10   11  10   10
## rA g1 a11 t12                   1  11   12  11   11
## rA g1 a12 t13                   1  12   13  12   12
## rA g1 a13 t14                   1  13   14  13   13
## rA g1 a14 t15                   1  14   15  14   14
## rA g1 a15 t16                   1  15   16  15   15
get.real(model.fits[[model.number]], "rBA", se=TRUE)
##                all.diff.index par.index  estimate        se       lcl       ucl
## rBA g1 a0 t1               52         6 0.0666338 0.0101774 0.0492509 0.0895738
## rBA g1 a1 t2               53         6 0.0666338 0.0101774 0.0492509 0.0895738
## rBA g1 a2 t3               54         6 0.0666338 0.0101774 0.0492509 0.0895738
## rBA g1 a3 t4               55         6 0.0666338 0.0101774 0.0492509 0.0895738
## rBA g1 a4 t5               56         6 0.0666338 0.0101774 0.0492509 0.0895738
## rBA g1 a5 t6               57         6 0.0666338 0.0101774 0.0492509 0.0895738
## rBA g1 a6 t7               58         6 0.0666338 0.0101774 0.0492509 0.0895738
## rBA g1 a7 t8               59         6 0.0666338 0.0101774 0.0492509 0.0895738
## rBA g1 a8 t9               60         6 0.0666338 0.0101774 0.0492509 0.0895738
## rBA g1 a9 t10              61         6 0.0666338 0.0101774 0.0492509 0.0895738
## rBA g1 a10 t11             62         6 0.0666338 0.0101774 0.0492509 0.0895738
## rBA g1 a11 t12             63         6 0.0666338 0.0101774 0.0492509 0.0895738
## rBA g1 a12 t13             64         6 0.0666338 0.0101774 0.0492509 0.0895738
## rBA g1 a13 t14             65         6 0.0666338 0.0101774 0.0492509 0.0895738
## rBA g1 a14 t15             66         6 0.0666338 0.0101774 0.0492509 0.0895738
## rBA g1 a15 t16             67         6 0.0666338 0.0101774 0.0492509 0.0895738
##                fixed    note group age time Age Time
## rBA g1 a0 t1                     1   0    1   0    0
## rBA g1 a1 t2                     1   1    2   1    1
## rBA g1 a2 t3                     1   2    3   2    2
## rBA g1 a3 t4                     1   3    4   3    3
## rBA g1 a4 t5                     1   4    5   4    4
## rBA g1 a5 t6                     1   5    6   5    5
## rBA g1 a6 t7                     1   6    7   6    6
## rBA g1 a7 t8                     1   7    8   7    7
## rBA g1 a8 t9                     1   8    9   8    8
## rBA g1 a9 t10                    1   9   10   9    9
## rBA g1 a10 t11                   1  10   11  10   10
## rBA g1 a11 t12                   1  11   12  11   11
## rBA g1 a12 t13                   1  12   13  12   12
## rBA g1 a13 t14                   1  13   14  13   13
## rBA g1 a14 t15                   1  14   15  14   14
## rBA g1 a15 t16                   1  15   16  15   15
get.real(model.fits[[model.number]], "rBa", se=TRUE)
##                all.diff.index par.index  estimate        se       lcl       ucl
## rBa g1 a0 t1               68         6 0.0666338 0.0101774 0.0492509 0.0895738
## rBa g1 a1 t2               69         6 0.0666338 0.0101774 0.0492509 0.0895738
## rBa g1 a2 t3               70         6 0.0666338 0.0101774 0.0492509 0.0895738
## rBa g1 a3 t4               71         6 0.0666338 0.0101774 0.0492509 0.0895738
## rBa g1 a4 t5               72         6 0.0666338 0.0101774 0.0492509 0.0895738
## rBa g1 a5 t6               73         6 0.0666338 0.0101774 0.0492509 0.0895738
## rBa g1 a6 t7               74         6 0.0666338 0.0101774 0.0492509 0.0895738
## rBa g1 a7 t8               75         6 0.0666338 0.0101774 0.0492509 0.0895738
## rBa g1 a8 t9               76         6 0.0666338 0.0101774 0.0492509 0.0895738
## rBa g1 a9 t10              77         6 0.0666338 0.0101774 0.0492509 0.0895738
## rBa g1 a10 t11             78         6 0.0666338 0.0101774 0.0492509 0.0895738
## rBa g1 a11 t12             79         6 0.0666338 0.0101774 0.0492509 0.0895738
## rBa g1 a12 t13             80         6 0.0666338 0.0101774 0.0492509 0.0895738
## rBa g1 a13 t14             81         6 0.0666338 0.0101774 0.0492509 0.0895738
## rBa g1 a14 t15             82         6 0.0666338 0.0101774 0.0492509 0.0895738
## rBa g1 a15 t16             83         6 0.0666338 0.0101774 0.0492509 0.0895738
##                fixed    note group age time Age Time
## rBa g1 a0 t1                     1   0    1   0    0
## rBa g1 a1 t2                     1   1    2   1    1
## rBa g1 a2 t3                     1   2    3   2    2
## rBa g1 a3 t4                     1   3    4   3    3
## rBa g1 a4 t5                     1   4    5   4    4
## rBa g1 a5 t6                     1   5    6   5    5
## rBa g1 a6 t7                     1   6    7   6    6
## rBa g1 a7 t8                     1   7    8   7    7
## rBa g1 a8 t9                     1   8    9   8    8
## rBa g1 a9 t10                    1   9   10   9    9
## rBa g1 a10 t11                   1  10   11  10   10
## rBa g1 a11 t12                   1  11   12  11   11
## rBa g1 a12 t13                   1  12   13  12   12
## rBa g1 a13 t14                   1  13   14  13   13
## rBa g1 a14 t15                   1  14   15  14   14
## rBa g1 a15 t16                   1  15   16  15   15
# collect models and make AICc table

model.set <- RMark::collect.models( type="2SpecConOccup")
model.set
##                                                        model npar     AICc
## 4     PsiA(~1)PsiBA(~1)PsiBa()pA(~1)pB(~1)rA(~1)rBA(~1)rBa()    6 1353.523
## 3   PsiA(~1)PsiBA(~1)PsiBa()pA(~1)pB(~1)rA(~1)rBA(~1)rBa(~1)    7 1354.587
## 2   PsiA(~1)PsiBA(~1)PsiBa(~1)pA(~1)pB(~1)rA(~1)rBA(~1)rBa()    7 1355.906
## 1 PsiA(~1)PsiBA(~1)PsiBa(~1)pA(~1)pB(~1)rA(~1)rBA(~1)rBa(~1)    8 1356.992
##   DeltaAICc     weight Deviance
## 4  0.000000 0.48361460 1340.432
## 3  1.064175 0.28406434 1339.114
## 2  2.382375 0.14695123 1340.432
## 1  3.468591 0.08536984 1339.072
names(model.set)
## [1] "m...001"     "m...002"     "m...003"     "m...004"     "model.table"
model.set$model.table
##   PsiA PsiBA PsiBa pA pB rA rBA rBa
## 4   ~1    ~1       ~1 ~1 ~1  ~1    
## 3   ~1    ~1       ~1 ~1 ~1  ~1  ~1
## 2   ~1    ~1    ~1 ~1 ~1 ~1  ~1    
## 1   ~1    ~1    ~1 ~1 ~1 ~1  ~1  ~1
##                                                        model npar     AICc
## 4     PsiA(~1)PsiBA(~1)PsiBa()pA(~1)pB(~1)rA(~1)rBA(~1)rBa()    6 1353.523
## 3   PsiA(~1)PsiBA(~1)PsiBa()pA(~1)pB(~1)rA(~1)rBA(~1)rBa(~1)    7 1354.587
## 2   PsiA(~1)PsiBA(~1)PsiBa(~1)pA(~1)pB(~1)rA(~1)rBA(~1)rBa()    7 1355.906
## 1 PsiA(~1)PsiBA(~1)PsiBa(~1)pA(~1)pB(~1)rA(~1)rBA(~1)rBa(~1)    8 1356.992
##   DeltaAICc     weight Deviance
## 4  0.000000 0.48361460 1340.432
## 3  1.064175 0.28406434 1339.114
## 2  2.382375 0.14695123 1340.432
## 1  3.468591 0.08536984 1339.072
# model averaged values at average covariate value

mean(input.data$RabbitPresence)
## [1] 0.4047619
PsiA.ma <- RMark::model.average(model.set, param="PsiA")
PsiA.ma
##               par.index  estimate         se fixed    note group age time Age
## PsiA g1 a0 t1         1 0.7673027 0.06180711                   1   0    1   0
##               Time
## PsiA g1 a0 t1    0
PsiBA.ma <- RMark::model.average(model.set, param="PsiBA")
PsiBA.ma
##                par.index  estimate       se fixed    note group age time Age
## PsiBA g1 a0 t1         2 0.9541771 0.039254                   1   0    1   0
##                Time
## PsiBA g1 a0 t1    0
PsiBa.ma <- RMark::model.average(model.set, param="PsiBa")
PsiBa.ma
##                par.index  estimate         se fixed    note group age time Age
## PsiBa g1 a0 t1         3 0.9588949 0.09367842                   1   0    1   0
##                Time
## PsiBa g1 a0 t1    0
# look at detection probabiities

RMark::model.average(model.set, param="pA")
##               par.index estimate        se fixed    note group age time Age
## pA g1 a0 t1           4 0.284039 0.1209681                   1   0    1   0
## pA g1 a1 t2           5 0.284039 0.1209681                   1   1    2   1
## pA g1 a2 t3           6 0.284039 0.1209681                   1   2    3   2
## pA g1 a3 t4           7 0.284039 0.1209681                   1   3    4   3
## pA g1 a4 t5           8 0.284039 0.1209681                   1   4    5   4
## pA g1 a5 t6           9 0.284039 0.1209681                   1   5    6   5
## pA g1 a6 t7          10 0.284039 0.1209681                   1   6    7   6
## pA g1 a7 t8          11 0.284039 0.1209681                   1   7    8   7
## pA g1 a8 t9          12 0.284039 0.1209681                   1   8    9   8
## pA g1 a9 t10         13 0.284039 0.1209681                   1   9   10   9
## pA g1 a10 t11        14 0.284039 0.1209681                   1  10   11  10
## pA g1 a11 t12        15 0.284039 0.1209681                   1  11   12  11
## pA g1 a12 t13        16 0.284039 0.1209681                   1  12   13  12
## pA g1 a13 t14        17 0.284039 0.1209681                   1  13   14  13
## pA g1 a14 t15        18 0.284039 0.1209681                   1  14   15  14
## pA g1 a15 t16        19 0.284039 0.1209681                   1  15   16  15
##               Time
## pA g1 a0 t1      0
## pA g1 a1 t2      1
## pA g1 a2 t3      2
## pA g1 a3 t4      3
## pA g1 a4 t5      4
## pA g1 a5 t6      5
## pA g1 a6 t7      6
## pA g1 a7 t8      7
## pA g1 a8 t9      8
## pA g1 a9 t10     9
## pA g1 a10 t11   10
## pA g1 a11 t12   11
## pA g1 a12 t13   12
## pA g1 a13 t14   13
## pA g1 a14 t15   14
## pA g1 a15 t16   15
RMark::model.average(model.set, param="pB")
##               par.index  estimate         se fixed    note group age time Age
## pB g1 a0 t1          20 0.3521314 0.03948552                   1   0    1   0
## pB g1 a1 t2          21 0.3521314 0.03948552                   1   1    2   1
## pB g1 a2 t3          22 0.3521314 0.03948552                   1   2    3   2
## pB g1 a3 t4          23 0.3521314 0.03948552                   1   3    4   3
## pB g1 a4 t5          24 0.3521314 0.03948552                   1   4    5   4
## pB g1 a5 t6          25 0.3521314 0.03948552                   1   5    6   5
## pB g1 a6 t7          26 0.3521314 0.03948552                   1   6    7   6
## pB g1 a7 t8          27 0.3521314 0.03948552                   1   7    8   7
## pB g1 a8 t9          28 0.3521314 0.03948552                   1   8    9   8
## pB g1 a9 t10         29 0.3521314 0.03948552                   1   9   10   9
## pB g1 a10 t11        30 0.3521314 0.03948552                   1  10   11  10
## pB g1 a11 t12        31 0.3521314 0.03948552                   1  11   12  11
## pB g1 a12 t13        32 0.3521314 0.03948552                   1  12   13  12
## pB g1 a13 t14        33 0.3521314 0.03948552                   1  13   14  13
## pB g1 a14 t15        34 0.3521314 0.03948552                   1  14   15  14
## pB g1 a15 t16        35 0.3521314 0.03948552                   1  15   16  15
##               Time
## pB g1 a0 t1      0
## pB g1 a1 t2      1
## pB g1 a2 t3      2
## pB g1 a3 t4      3
## pB g1 a4 t5      4
## pB g1 a5 t6      5
## pB g1 a6 t7      6
## pB g1 a7 t8      7
## pB g1 a8 t9      8
## pB g1 a9 t10     9
## pB g1 a10 t11   10
## pB g1 a11 t12   11
## pB g1 a12 t13   12
## pB g1 a13 t14   13
## pB g1 a14 t15   14
## pB g1 a15 t16   15
RMark::model.average(model.set, param="rA")
##               par.index   estimate          se fixed    note group age time Age
## rA g1 a0 t1          36 0.04725107 0.007868764                   1   0    1   0
## rA g1 a1 t2          37 0.04725107 0.007868764                   1   1    2   1
## rA g1 a2 t3          38 0.04725107 0.007868764                   1   2    3   2
## rA g1 a3 t4          39 0.04725107 0.007868764                   1   3    4   3
## rA g1 a4 t5          40 0.04725107 0.007868764                   1   4    5   4
## rA g1 a5 t6          41 0.04725107 0.007868764                   1   5    6   5
## rA g1 a6 t7          42 0.04725107 0.007868764                   1   6    7   6
## rA g1 a7 t8          43 0.04725107 0.007868764                   1   7    8   7
## rA g1 a8 t9          44 0.04725107 0.007868764                   1   8    9   8
## rA g1 a9 t10         45 0.04725107 0.007868764                   1   9   10   9
## rA g1 a10 t11        46 0.04725107 0.007868764                   1  10   11  10
## rA g1 a11 t12        47 0.04725107 0.007868764                   1  11   12  11
## rA g1 a12 t13        48 0.04725107 0.007868764                   1  12   13  12
## rA g1 a13 t14        49 0.04725107 0.007868764                   1  13   14  13
## rA g1 a14 t15        50 0.04725107 0.007868764                   1  14   15  14
## rA g1 a15 t16        51 0.04725107 0.007868764                   1  15   16  15
##               Time
## rA g1 a0 t1      0
## rA g1 a1 t2      1
## rA g1 a2 t3      2
## rA g1 a3 t4      3
## rA g1 a4 t5      4
## rA g1 a5 t6      5
## rA g1 a6 t7      6
## rA g1 a7 t8      7
## rA g1 a8 t9      8
## rA g1 a9 t10     9
## rA g1 a10 t11   10
## rA g1 a11 t12   11
## rA g1 a12 t13   12
## rA g1 a13 t14   13
## rA g1 a14 t15   14
## rA g1 a15 t16   15
RMark::model.average(model.set, param="rBA")
##                par.index   estimate         se fixed    note group age time Age
## rBA g1 a0 t1          52 0.08336944 0.03756712                   1   0    1   0
## rBA g1 a1 t2          53 0.08336944 0.03756712                   1   1    2   1
## rBA g1 a2 t3          54 0.08336944 0.03756712                   1   2    3   2
## rBA g1 a3 t4          55 0.08336944 0.03756712                   1   3    4   3
## rBA g1 a4 t5          56 0.08336944 0.03756712                   1   4    5   4
## rBA g1 a5 t6          57 0.08336944 0.03756712                   1   5    6   5
## rBA g1 a6 t7          58 0.08336944 0.03756712                   1   6    7   6
## rBA g1 a7 t8          59 0.08336944 0.03756712                   1   7    8   7
## rBA g1 a8 t9          60 0.08336944 0.03756712                   1   8    9   8
## rBA g1 a9 t10         61 0.08336944 0.03756712                   1   9   10   9
## rBA g1 a10 t11        62 0.08336944 0.03756712                   1  10   11  10
## rBA g1 a11 t12        63 0.08336944 0.03756712                   1  11   12  11
## rBA g1 a12 t13        64 0.08336944 0.03756712                   1  12   13  12
## rBA g1 a13 t14        65 0.08336944 0.03756712                   1  13   14  13
## rBA g1 a14 t15        66 0.08336944 0.03756712                   1  14   15  14
## rBA g1 a15 t16        67 0.08336944 0.03756712                   1  15   16  15
##                Time
## rBA g1 a0 t1      0
## rBA g1 a1 t2      1
## rBA g1 a2 t3      2
## rBA g1 a3 t4      3
## rBA g1 a4 t5      4
## rBA g1 a5 t6      5
## rBA g1 a6 t7      6
## rBA g1 a7 t8      7
## rBA g1 a8 t9      8
## rBA g1 a9 t10     9
## rBA g1 a10 t11   10
## rBA g1 a11 t12   11
## rBA g1 a12 t13   12
## rBA g1 a13 t14   13
## rBA g1 a14 t15   14
## rBA g1 a15 t16   15
RMark::model.average(model.set, param="rBa")
##                par.index   estimate         se fixed    note group age time Age
## rBa g1 a0 t1          68 0.06546068 0.01051834                   1   0    1   0
## rBa g1 a1 t2          69 0.06546068 0.01051834                   1   1    2   1
## rBa g1 a2 t3          70 0.06546068 0.01051834                   1   2    3   2
## rBa g1 a3 t4          71 0.06546068 0.01051834                   1   3    4   3
## rBa g1 a4 t5          72 0.06546068 0.01051834                   1   4    5   4
## rBa g1 a5 t6          73 0.06546068 0.01051834                   1   5    6   5
## rBa g1 a6 t7          74 0.06546068 0.01051834                   1   6    7   6
## rBa g1 a7 t8          75 0.06546068 0.01051834                   1   7    8   7
## rBa g1 a8 t9          76 0.06546068 0.01051834                   1   8    9   8
## rBa g1 a9 t10         77 0.06546068 0.01051834                   1   9   10   9
## rBa g1 a10 t11        78 0.06546068 0.01051834                   1  10   11  10
## rBa g1 a11 t12        79 0.06546068 0.01051834                   1  11   12  11
## rBa g1 a12 t13        80 0.06546068 0.01051834                   1  12   13  12
## rBa g1 a13 t14        81 0.06546068 0.01051834                   1  13   14  13
## rBa g1 a14 t15        82 0.06546068 0.01051834                   1  14   15  14
## rBa g1 a15 t16        83 0.06546068 0.01051834                   1  15   16  15
##                Time
## rBa g1 a0 t1      0
## rBa g1 a1 t2      1
## rBa g1 a2 t3      2
## rBa g1 a3 t4      3
## rBa g1 a4 t5      4
## rBa g1 a5 t6      5
## rBa g1 a6 t7      6
## rBa g1 a7 t8      7
## rBa g1 a8 t9      8
## rBa g1 a9 t10     9
## rBa g1 a10 t11   10
## rBa g1 a11 t12   11
## rBa g1 a12 t13   12
## rBa g1 a13 t14   13
## rBa g1 a14 t15   14
## rBa g1 a15 t16   15
cleanup(ask=FALSE)