# Multi species single season with a list of models

# Co-occurence of Grizzly and black bears as measured by camera
#
# Data from
#   Ladle A, Steenweg R, Shepherd B, Boyce MS (2018)
#   The role of human outdoor recreation in shaping patterns of grizzly bear-black 
#   bear co-occurrence. 
#   PLOS ONE 13(2): e0191730. https://doi.org/10.1371/journal.pone.0191730

#   Ladle A, Steenweg R, Shepherd B, Boyce MS (2018)
#   Data from: The role of human outdoor recreation in shaping patterns of 
#   grizzly bear-black bear co-occurrence. 
#   Dryad Digital Repository. https://doi.org/10.5061/dryad.s81k3

# Briefly,
# Cameras placed on trails in summer 2014
# Classified images as type of bear and type of human activity.


# 2018-12-26 Code contributed by Carl James Schwarz (cschwarz.stat.sfu.cs@gmail.com)
library(car)
## Loading required package: carData
library(ggplot2)
library(readxl)
library(reshape2)
library(RMark)
## This is RMark 2.2.5
##  Documentation available at http://www.phidot.org/software/mark/rmark/RMarkDocumentation.zip
# get the data. Sites x # of detections grouped into 4 day intervals
gb.data <- read.csv(file.path("..","Raw data","four_day_grizzly.csv"), header=FALSE, strip.white=TRUE, as.is=TRUE)
bb.data <- read.csv(file.path("..","Raw data","four_day_black.csv"),   header=FALSE, strip.white=TRUE, as.is=TRUE)

# Notice that in some days, more than 1 detection recorded.
range(gb.data, na.rm=TRUE)
## [1] 0 6
apply(gb.data, 1, max, na.rm=TRUE)
##   [1] 2 0 0 6 0 0 0 0 0 1 1 1 0 3 1 1 1 0 0 1 0 1 0 3 1 0 0 2 0 0 0 0 0 0 0
##  [36] 0 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0
##  [71] 0 0 1 2 0 3 0 3 0 1 2 1 0 2 1 4 1 0 1 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 2
## [106] 0 2 2 2 1 0 0 1 0 1 0 0 1 4 2 1 1 1 0 0 0 1 0 0 0 1 1 1 0 2 2 2 1 2 0
## [141] 2 1 1 0 1 1 0 1 0 0 0 0 0 1 1 1 2 0 0 0 1 1 1 2 1 0 1 0 1 0 2 2 2 0 0
## [176] 0 0 0 0 1 2 0
# Convert history to compressed format
# 0=neither species detected,
# 1=only species A detected,
# 2=only species B detected,
# 3=both species detected

# we need to ignore multple detections of each species in a camera
input.data <- (bb.data>=1) + 2*(gb.data>=1)
input.data
##        V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18
##   [1,]  0  0  0  0  0  0  2  2  0   0   0   0   0   0   0   0   0   0
##   [2,]  0  0 NA NA NA NA NA NA NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##   [3,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
##   [4,]  2  2  2  2  2  2  2  2 NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##   [5,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
##   [6,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
##   [7,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
##   [8,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
##   [9,]  0  0  0  0  0  0  0  0 NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [10,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   2   0   0   0
##  [11,]  2  0  0  0  0  2  0  0  2   0   0   0   0   0   0   0   0   0
##  [12,]  0  2  1  0  0  0  0  0  0   0   0   1   0   0   0   1   0   0
##  [13,]  0  0  1  1  0  0  0  0  0   0   0   0   0   0   0   0   0   0
##  [14,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   2   0   0
##  [15,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   2   0   0
##  [16,]  0  2  0  0  2  0  0 NA NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [17,]  0  0  0  2  0  2  0  0  0   0   0   0   0   0   0   0   0   0
##  [18,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
##  [19,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
##  [20,]  1  0  0  0  0  0  0  2  0   0   0   0   0   0   0   0   0   0
##  [21,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
##  [22,]  2  0  0  0  2  0  0  0  0   0   0   0   2   0   0   0   0   0
##  [23,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
##  [24,]  2  0  0  0  0  2  0  0  0   0   2   2   0   0   0   0   0   0
##  [25,]  2  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
##  [26,]  0  1  0  0  0  0  0  1  0   0   0   0   0   0   0   0   0   0
##  [27,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
##  [28,]  0  0  2  0  1  0  0  0  0   0   0   0   0   2   2   0  NA  NA
##  [29,]  0  0  0  0  0 NA NA NA NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [30,]  0  0  0  0  0 NA NA NA NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [31,]  0  0  0  0  0 NA NA NA NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [32,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
##  [33,]  0  0  0  1  0  0  0  0  0   0   0   0   0   0   0   0   0   0
##  [34,]  0  0  0  0 NA NA NA NA NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [35,]  0  0  0  0  0 NA NA NA NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [36,]  0  0  0  0  0 NA NA NA NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [37,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
##  [38,]  0  0  0  0  0  0  2  0  0   0   0   0   0   0   0   0   0   0
##  [39,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
##  [40,]  0  0  0  0  0  0  0  0  2   0   0   0   0   0   0   0   1   0
##  [41,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
##  [42,]  0  0  2  1  0  1  0  0  0   0   0   0   0   0   0   0   0   0
##  [43,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
##  [44,]  1  0  0  2  0  0  0  0  0   0   0   0   0   0   0   0   1   0
##  [45,]  0  1  0  0  0  1  0  0  0   1   1   0   0   0   0   0   0   0
##  [46,]  1  0  0  1  0  0  0  0  0   0   0   0   0   0   0   0   0   0
##  [47,]  0  0  0  0  0  0  1  0  0   0   0   0   0   0   0   0   0   0
##  [48,]  0  0  1  0  0  0  0  1  0   0   0   0   0   0   0   1   0   0
##  [49,]  0  1  1  0  0  0  0 NA NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [50,]  0  0  0  0  2  1  0  0  0   0   0   0   0   0   0   0   0   0
##  [51,]  1  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
##  [52,]  0  1  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
##  [53,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
##  [54,]  0  0  0  0  0  0  1  0  0   2   0   0   0   0   0   0   0   0
##  [55,]  0  0  1  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
##  [56,]  0  0  0  1  0  0  0  0  0   0   0   2   0   0   0   0   0   0
##  [57,]  0  0  0  0  0  0  1  0  0   0   0   0   0   0   0   0   0   0
##  [58,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
##  [59,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
##  [60,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
##  [61,]  0  3  0  0  0  0  0  0  0   0   0   0   1   0   1   0   0   0
##  [62,]  0  0  0  0  1  0  0  0  0   0   0   0   0   0   0   0   0   1
##  [63,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
##  [64,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
##  [65,]  0  2  0  0  2  2  0  0  0   2   0   2   0   0  NA  NA  NA  NA
##  [66,]  0  0  0  1  0  0  0  0  0   0  NA  NA  NA  NA  NA  NA  NA  NA
##  [67,]  0  1  0  0  0  0 NA NA NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [68,]  0  0  0  0  0  0 NA NA NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [69,]  1  1  1  0  1  0  1  0  0   0   0   1   1   1   1   0   0   1
##  [70,]  0  0  1  0  0  0  0  0  0   0   0   0   0   0   1   0   0   0
##  [71,]  0  0  0  0  0  1  0  0  0   0   0   0   0   0   0   0   0   0
##  [72,]  0  0  0  0  0  0  0  0  0   0   0   0  NA  NA  NA  NA  NA  NA
##  [73,]  0  0  0  0  0  0  0  0  0   0   0   0   2   0   0   0   0   0
##  [74,]  2  0 NA NA NA NA NA NA NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [75,]  0  0  0  0  0  0  0  1  0   0   1   0   1   0   0   0   1   0
##  [76,]  3  2  2  0  0  0  1  0  0   1   1   0   0   0   0   0   0   0
##  [77,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   1   0   0
##  [78,]  2  1  2  2  2  0  0  0  0   0   1   0   0   0  NA  NA  NA  NA
##  [79,]  0  0  1  0  0  0  0  1  0   0   0   0   0   0   0   0   0   0
##  [80,]  0  2  0 NA NA NA NA NA NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [81,]  0  0  0  0  0  2  0  0  0   0   0   0   0   0   0   0  NA  NA
##  [82,]  1  0  1  0  1  1  0  0  0   0   0   0   0   2   0  NA  NA  NA
##  [83,]  0  0 NA NA NA NA NA NA NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [84,]  3  3  0  0  0  0  1  0  0   0   0   0   0   0   0   0   0   0
##  [85,]  2  0  0  0  0  0  0 NA NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [86,]  2  0  2  2  0  0  0  0  2   0   0   2   0   0   2   2   2   3
##  [87,]  1  0  0  0  0  0  0  2  0   0   0   0   0   0   0   0   0   0
##  [88,]  0  0  0  0  1  1  0  1  0   0   0   0   0   0   0   0  NA  NA
##  [89,]  0  0  0  2  0  0  0  0  0   0   0   0   0   0   0   0   0   0
##  [90,]  0  0  0  0  1  0  0  0  0   1  NA  NA  NA  NA  NA  NA  NA  NA
##  [91,]  0  1  1  0  0  0  1 NA NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [92,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
##  [93,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0  NA
##  [94,]  0  0 NA NA NA NA NA NA NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [95,]  0  0  0  0  0  0  0  0  0  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [96,]  1  0  1  0  0  1  0  0  0   0   0   0   0   1   0   0   0   0
##  [97,]  0  0  0  0  0  0  0  0  0   2  NA  NA  NA  NA  NA  NA  NA  NA
##  [98,]  2  2  0  0  2  0  0 NA NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
##  [99,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   2   0  NA  NA
## [100,]  0  0  0 NA NA NA NA NA NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
## [101,]  0  0  0  0  0  0  0 NA NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
## [102,]  2  0  0  0  0  2  2  2 NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
## [103,]  1  1  0  0  0  1  0  1  0   0   0   0   1   0   1   0   0   1
## [104,]  2  0  0  1  0  0 NA NA NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
## [105,]  2  1  0  0  0  0  0  0  2   0   2   0   2   0  NA  NA  NA  NA
## [106,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
## [107,]  2  0  2 NA NA NA NA NA NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
## [108,]  2  0 NA NA NA NA NA NA NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
## [109,]  2  2 NA NA NA NA NA NA NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
## [110,]  0  0  0  0  2  0  0  0  0   0   0   0   0   0  NA  NA  NA  NA
## [111,]  0  1  0  1  0  0  0  0  0   0   0   0   0   0   1   0   1   0
## [112,]  0  0  0  0  0  0  0  0  0   0   0   0  NA  NA  NA  NA  NA  NA
## [113,]  0  0  2  0  0 NA NA NA NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
## [114,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
## [115,]  0  1  0  1  0  0  0  0  0   2   0   0  NA  NA  NA  NA  NA  NA
## [116,]  1  1  1  1  1  1  1  0  0   0   1   1   0  NA  NA  NA  NA  NA
## [117,]  0  0  0  0 NA NA NA NA NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
## [118,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   2   0   0
## [119,]  3  1  2  2  2  0  0  2  2   0   2   0   0   2   0   0   0   0
## [120,]  0  0  2  0  2  0  0  2  0  NA  NA  NA  NA  NA  NA  NA  NA  NA
## [121,]  1  0  0  0  2  3  0 NA NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
## [122,]  2  2  0  0  0  0  0  0  0   0   0   0   0   0  NA  NA  NA  NA
## [123,]  2  0  0  0  0  0  0  0 NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
## [124,]  0  0  0  0  0  0  0  0  0   0   1   0   0   0   1   0  NA  NA
## [125,]  0  0  0  0  0  0  0  0  0   0   1   0   0   0   0   0  NA  NA
## [126,]  0  0  0  0  0  0 NA NA NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
## [127,]  0  1  2  2  1  1  1  0  0   0   1   0   0   0   0   0  NA  NA
## [128,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
## [129,]  0  0  0  0  0  0  0  0  0  NA  NA  NA  NA  NA  NA  NA  NA  NA
## [130,]  0  0  0  0  0  0  0 NA NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
## [131,]  2  0  0  0  0  0  0  0  0   0   0   0   0   0   0  NA  NA  NA
## [132,]  0  0  0  0  2  0  0  0  0   1   0   0   0   0   2   0   2   0
## [133,]  0  0  0  0  0  0  0  0  2   0   0   0  NA  NA  NA  NA  NA  NA
## [134,]  0  0 NA NA NA NA NA NA NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
## [135,]  0  0  2  0  0  0  0  0  0   0   0   2   0   0   0   0   0   0
## [136,]  2  2  0  0  0  2  0  0  0   0   2   0   0   0   0   0   0   0
## [137,]  2  2  2  0  0  0  2  0  0   0   2   2   0   0   0   0   0   0
## [138,]  0  0  0  0  0  2  0  0  0   0   0   0   0   0   0   0   0   0
## [139,]  2  2  0  0  0  0  0  0  0   0   0   0   0   2   0   0   0   0
## [140,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
## [141,]  0  2  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
## [142,]  0  2  0  0  0  0  0  1  0   0   0   0   0   0   0   0   0   0
## [143,]  1  2  0  0  0  0  1  0  0   0   0   0   0   0   0   0   0   0
## [144,]  0  0  1  0  0  0  0  0  0   0   0   0   0   1   0   0   1   0
## [145,]  0  2  2  0  0  0  0  0  0   0   0   0   0   1   0   0   0   0
## [146,]  0  0  0  0  2  0  0  0  0   0   0   0   0   0   0   0   0   0
## [147,]  1  0  0  0  0  0  0  0  0   1   0   0   0   0   0   0   0   0
## [148,]  0  0  0  0  0  0  0  0  0   2   0   0   0   0   0   0   0   0
## [149,]  0  0  0  0  0  0  0  0  0   0   0   0   0  NA  NA  NA  NA  NA
## [150,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
## [151,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
## [152,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
## [153,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
## [154,]  0  0  2  0  0  0  1  1  0   0   0   0  NA  NA  NA  NA  NA  NA
## [155,]  0  0  2  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
## [156,]  1  1  2  0  0  0  0  0  0   0   0   0   0   0   1   1   0   0
## [157,]  2  2  1  0  0  0  1  0  0   2   2   2   0   0   0   0   0   0
## [158,]  0  0  0  0  0  0 NA NA NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
## [159,]  1  0  1  0  1  0  0  0  0   0   0   0   0   0   0   0   0   0
## [160,]  1  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
## [161,]  1  0  0  0  0  2  0  0  0   0   0   0   0   0   0   0   0   0
## [162,]  0  1  0  0  1  0  0  0  0   0   0   2   0   0   1   0   0   0
## [163,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   2   0   0   0
## [164,]  0  2  0  2  0  0  0  0  0   0   0   0   0   0   2   0   0   0
## [165,]  1  0  0  0  3  0  0  0  0   0   0   0   0   0   0   0   0   0
## [166,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
## [167,]  1  1  2  0  0  0  0  1  0   0   0   0   0   0   0   0   0   0
## [168,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
## [169,]  2  1  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   2
## [170,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   1   0   0
## [171,]  0  2  0  2  0  0  0  0  0   0   0   0   0   0   0   0   0   0
## [172,]  2  0  0  0  0  0 NA NA NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
## [173,]  2  2  2  0  2  0  0  0  0   0   0   0   0   0   0   0   0   0
## [174,]  0  0  1  0  1  0  0  0  0   0   0   0   0   0   0   0   0   0
## [175,]  0  1  1  1  1  0  0  0  0   0   0   1   0   0   0   0   0   0
## [176,]  0  0  0  0  1  0  0  0  0   0   0   0   0   0   0   0   0   0
## [177,]  0  0  0  1  0  0  1  1  1   1   1   1   0   0   0   0   0   0
## [178,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
## [179,]  0  0  0  0  0  0  1  0  0   1   0   1   0   0   0   0   0   0
## [180,]  0  0  2  0  0 NA NA NA NA  NA  NA  NA  NA  NA  NA  NA  NA  NA
## [181,]  2  0  2  0  0  0  0  0  0   0   0   0  NA  NA  NA  NA  NA  NA
## [182,]  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0
input.chistory <- data.frame(lapply(as.data.frame(input.data), as.character), stringsAsFactors=FALSE)

input.chistory <- data.frame(lapply(input.chistory, 
                           car::recode, " '0'='00'; '2'='10';'1'='01';'3'='11';", as.numeric=FALSE, as.factor=FALSE),
                           stringsAsFactors=FALSE)
input.history <- data.frame(ch=apply(input.chistory, 1, paste, sep="",collapse=""), freq=1)


# Change any NA to . in the chapter history
select <- grepl("NA", input.history$ch)
input.history[ select,][1:5,]
##                                      ch freq
## 2  0000NANANANANANANANANANANANANANANANA    1
## 4  1010101010101010NANANANANANANANANANA    1
## 9  0000000000000000NANANANANANANANANANA    1
## 16 00100000100000NANANANANANANANANANANA    1
## 28 00001000010000000000000000101000NANA    1
input.history$ch <- gsub("NA","..", input.history$ch, fixed=TRUE)
input.history[ select,][1:5,]
##                                      ch freq
## 2  0000................................    1
## 4  1010101010101010....................    1
## 9  0000000000000000....................    1
## 16 00100000100000......................    1
## 28 00001000010000000000000000101000....    1
# Get the site covariates

site.covar <- read.csv(file.path("..","Raw data","covariates.csv"),   header=TRUE, strip.white=TRUE, as.is=TRUE)
names(site.covar)
## [1] "Cam_name"  "X"         "Y"         "Land_type" "droad"     "dstream"  
## [7] "elev"      "tpi"       "NDVI"
names(site.covar) <- make.names(names(site.covar))
names(site.covar)
## [1] "Cam_name"  "X"         "Y"         "Land_type" "droad"     "dstream"  
## [7] "elev"      "tpi"       "NDVI"
head(site.covar)
##                              Cam_name      X       Y Land_type      droad
## 1        amethyst lake 415655 5838411 415655 5838411    Jasper 12759.7998
## 2         ancient wall 376992 5919664 376992 5919664    Jasper 47406.6016
## 3              astoria 427308 5839183 427308 5839183    Jasper  1134.0400
## 4            bess pass 343359 5911520 343359 5911520     Crown 76867.2031
## 5  brewster skywalk c2 481109 5789822 481109 5789822    Jasper    44.7214
## 6 brewster skywalk c2b 481109 5789822 481107 5789822    Jasper    49.2443
##    dstream elev      tpi     NDVI
## 1  55.0000 1994 -212.058 7102.968
## 2  53.1507 1760 -373.933 6576.896
## 3 640.3120 1722 -259.626 6440.972
## 4 530.0000 1695    0.000 6789.304
## 5 101.2420 1825 -608.371 5605.156
## 6  97.0824 1825 -608.371 5605.156
# Standardize Elevation covariates
elev.mean <- mean(site.covar$elev)
elev.s    <- sd  (site.covar$elev)
site.covar$elev_std <- (site.covar$elev - elev.mean)/elev.s


# add the site covariate to the chapture hisotry
input.history <- cbind(input.history, site.covar)
head(input.history)
##                                     ch freq
## 1 000000000000101000000000000000000000    1
## 2 0000................................    1
## 3 000000000000000000000000000000000000    1
## 4 1010101010101010....................    1
## 5 000000000000000000000000000000000000    1
## 6 000000000000000000000000000000000000    1
##                              Cam_name      X       Y Land_type      droad
## 1        amethyst lake 415655 5838411 415655 5838411    Jasper 12759.7998
## 2         ancient wall 376992 5919664 376992 5919664    Jasper 47406.6016
## 3              astoria 427308 5839183 427308 5839183    Jasper  1134.0400
## 4            bess pass 343359 5911520 343359 5911520     Crown 76867.2031
## 5  brewster skywalk c2 481109 5789822 481109 5789822    Jasper    44.7214
## 6 brewster skywalk c2b 481109 5789822 481107 5789822    Jasper    49.2443
##    dstream elev      tpi     NDVI  elev_std
## 1  55.0000 1994 -212.058 7102.968 1.8858767
## 2  53.1507 1760 -373.933 6576.896 0.9404520
## 3 640.3120 1722 -259.626 6440.972 0.7869215
## 4 530.0000 1695    0.000 6789.304 0.6778340
## 5 101.2420 1825 -608.371 5605.156 1.2030700
## 6  97.0824 1825 -608.371 5605.156 1.2030700
Nsites <- nrow(input.history)
Nvisits<- nchar(input.history$ch[1])


bear.data <- process.data(data=input.history,
                         model="2SpecConOccup")  # this parameterization is more stable

summary(bear.data)
##                  Length Class      Mode     
## data              12    data.frame list     
## model              1    -none-     character
## mixtures           1    -none-     numeric  
## freq             182    -none-     numeric  
## nocc               1    -none-     numeric  
## nocc.secondary     0    -none-     NULL     
## time.intervals    18    -none-     numeric  
## begin.time         1    -none-     numeric  
## age.unit           1    -none-     numeric  
## initial.ages       1    -none-     numeric  
## group.covariates   0    -none-     NULL     
## nstrata            1    -none-     numeric  
## strata.labels      0    -none-     NULL     
## counts             0    -none-     NULL     
## reverse            1    -none-     logical  
## areas              0    -none-     NULL     
## events             0    -none-     NULL
# are there any time-specific covariates? If so add them to the ddl's
bear.ddl <- RMark::make.design.data(bear.data)  # need for covariate predictions


# What are the parameter names for Single Season Single Species models
setup.parameters("2SpecConOccup", check=TRUE)
## [1] "PsiA"  "PsiBA" "PsiBa" "pA"    "pB"    "rA"    "rBA"   "rBa"
# Use the psiAB parameterization 
#    Parameters of the model are 
#        psiA  - occupancy probability of species A
#        psiBA - occupancy probability of species B if species A is present
#        psiBa - occupancy probability of species B if species A is absent
#
#    If species are independent thatn psiBA = psiBa.
#       Alternatively, nu = odds(B|A)/odds(B|a) = 1.
#
#    Detection parameters
#        pA    - probability of detection if A is alone in the site
#        pB    - probability of detection if B is alone in the site
#        rA    - probability of detecting A only given both on the site
#        rBA   - probability of detecting B given that A was detected and both are on the site
#        rBa   - probability of detecting B given that A not detected and both are on the site 
#    Ifspecies do not interact, then
#        rBA = rBa
#    and
#        rho = odds(rBA)/odds(rBa) = 1


setup.parameters("2SpecConOccup", check=TRUE)
## [1] "PsiA"  "PsiBA" "PsiBa" "pA"    "pB"    "rA"    "rBA"   "rBa"
# Get the list of models. NOtice NO equal signs here
model.list.csv <- textConnection("
PsiA,         PsiBA,           PsiBa,             pA,   pB,   rA,   rBA,   rBa
~elev_std,     ~elev_std,       ~elev_std,        ~1,     ~1,  ~1,   ~1,    ~SHARE
~1,            ~1,              ~1,               ~1,     ~1,  ~1,   ~1,    ~1
~1,            ~1,              ~1,               ~1,     ~1,  ~1,   ~1,    ~SHARE
~1,            ~1,              ~SHARE,           ~1,     ~1,  ~1,   ~1,    ~1
~1,            ~1,              ~SHARE,           ~1,     ~1,  ~1,   ~1,    ~SHARE")


model.list <- read.csv(model.list.csv, header=TRUE, as.is=TRUE, strip.white=TRUE)
model.list$model.number <- 1:nrow(model.list)
model.list
##        PsiA     PsiBA     PsiBa pA pB rA rBA    rBa model.number
## 1 ~elev_std ~elev_std ~elev_std ~1 ~1 ~1  ~1 ~SHARE            1
## 2        ~1        ~1        ~1 ~1 ~1 ~1  ~1     ~1            2
## 3        ~1        ~1        ~1 ~1 ~1 ~1  ~1 ~SHARE            3
## 4        ~1        ~1    ~SHARE ~1 ~1 ~1  ~1     ~1            4
## 5        ~1        ~1    ~SHARE ~1 ~1 ~1  ~1 ~SHARE            5
# fit the models
myobs <- ls()
myobs <- myobs[ grepl("m...",myobs,fixed=TRUE)]
cat("Removing ", myobs, "\n")
## Removing
rm(list=myobs)

model.fits <- plyr::dlply(model.list, "model.number", function(x,input.data, input.ddl){
  cat("\n\n***** Starting ", unlist(x), "\n")
  #browser()
  model.parameters=list(
    PsiA   =list(formula=as.formula(eval(x$PsiA ))),
    PsiBA  =list(formula=as.formula(eval(x$PsiBA))),
    PsiBa  =list(formula=as.formula(eval(x$PsiBa))),
    pA     =list(formula=as.formula(eval(x$pA ))),
    pB     =list(formula=as.formula(eval(x$pB ))),
    rA     =list(formula=as.formula(eval(x$rA ))),
    rBA    =list(formula=as.formula(eval(x$rBA))),
    rBa    =list(formula=as.formula(eval(x$rBa)))
  )
  if(x$rBa == '~SHARE'){
     model.parameters$rBA =list(formula=as.formula(eval(x$rBA)), share=TRUE)
     model.parameters$rBa = NULL
  }
  if(x$PsiBa == '~SHARE'){
     model.parameters$PsiBA =list(formula=as.formula(eval(x$PsiBA)), share=TRUE)
     model.parameters$PsiBa = NULL
  }
 
  fit <- RMark::mark(input.data, ddl=input.ddl,
                     model="2SpecConOccup",
                     model.parameters=model.parameters
                     #,brief=TRUE,output=FALSE, delete=TRUE
                     #,invisible=TRUE,output=TRUE  # set for debugging
          )
  mnumber <- paste("m...",formatC(x$model.number, width = 3, format = "d", flag = "0"),sep="")
  assign( mnumber, fit, envir=.GlobalEnv)
  #browser()
  fit
  
},input.data=bear.data, input.ddl=bear.ddl)
## 
## 
## ***** Starting  ~elev_std ~elev_std ~elev_std ~1 ~1 ~1 ~1 ~SHARE 1
## 
## Note: only 9 parameters counted of 10 specified parameters
## AICc and parameter count have been adjusted upward
## 
## Output summary for 2SpecConOccup model
## Name : PsiA(~elev_std)PsiBA(~elev_std)PsiBa(~elev_std)pA(~1)pB(~1)rA(~1)rBA(~1)rBa() 
## 
## Npar :  10  (unadjusted=9)
## -2lnL:  2360.583
## AICc :  2381.87  (unadjusted=2379.6297)
## 
## Beta
##                     estimate           se           lcl          ucl
## PsiA:(Intercept)   0.4927662    0.2342841     0.0335693    0.9519630
## PsiA:elev_std      0.3729369    0.2104800    -0.0396040    0.7854778
## PsiBA:(Intercept)  4.4911960    1.0479925     2.4371306    6.5452614
## PsiBA:elev_std    -0.7055059    0.8999841    -2.4694747    1.0584629
## PsiBa:(Intercept) -1.6751620    0.8887774    -3.4171658    0.0668418
## PsiBa:elev_std    -3.1110476    1.4590367    -5.9707596   -0.2513357
## pA:(Intercept)    16.2869740 1186.2913000 -2308.8441000 2341.4180000
## pB:(Intercept)    -1.4079082    0.1902395    -1.7807777   -1.0350387
## rA:(Intercept)    -2.1926439    0.1152314    -2.4184976   -1.9667903
## rBA:(Intercept)   -2.8737722    0.1206942    -3.1103327   -2.6372116
## 
## 
## Real Parameter PsiA
##          1
##  0.6207579
## 
## 
## Real Parameter PsiBA
##         1
##  0.988917
## 
## 
## Real Parameter PsiBa
##          1
##  0.1577372
## 
## 
## Real Parameter pA
##          1         2         3         4         5         6         7
##  0.9999999 0.9999999 0.9999999 0.9999999 0.9999999 0.9999999 0.9999999
##          8         9        10        11        12        13        14
##  0.9999999 0.9999999 0.9999999 0.9999999 0.9999999 0.9999999 0.9999999
##         15        16        17        18
##  0.9999999 0.9999999 0.9999999 0.9999999
## 
## 
## Real Parameter pB
##          1         2         3         4         5         6         7
##  0.1965642 0.1965642 0.1965642 0.1965642 0.1965642 0.1965642 0.1965642
##          8         9        10        11        12        13        14
##  0.1965642 0.1965642 0.1965642 0.1965642 0.1965642 0.1965642 0.1965642
##         15        16        17        18
##  0.1965642 0.1965642 0.1965642 0.1965642
## 
## 
## Real Parameter rA
##         1        2        3        4        5        6        7        8
##  0.100413 0.100413 0.100413 0.100413 0.100413 0.100413 0.100413 0.100413
##         9       10       11       12       13       14       15       16
##  0.100413 0.100413 0.100413 0.100413 0.100413 0.100413 0.100413 0.100413
##        17       18
##  0.100413 0.100413
## 
## 
## Real Parameter rBA
##          1         2         3         4         5         6         7
##  0.0534654 0.0534654 0.0534654 0.0534654 0.0534654 0.0534654 0.0534654
##          8         9        10        11        12        13        14
##  0.0534654 0.0534654 0.0534654 0.0534654 0.0534654 0.0534654 0.0534654
##         15        16        17        18
##  0.0534654 0.0534654 0.0534654 0.0534654
## 
## 
## Real Parameter rBa
##          1         2         3         4         5         6         7
##  0.0534654 0.0534654 0.0534654 0.0534654 0.0534654 0.0534654 0.0534654
##          8         9        10        11        12        13        14
##  0.0534654 0.0534654 0.0534654 0.0534654 0.0534654 0.0534654 0.0534654
##         15        16        17        18
##  0.0534654 0.0534654 0.0534654 0.0534654
## 
## 
## ***** Starting  ~1 ~1 ~1 ~1 ~1 ~1 ~1 ~1 2 
## 
## Output summary for 2SpecConOccup model
## Name : PsiA(~1)PsiBA(~1)PsiBa(~1)pA(~1)pB(~1)rA(~1)rBA(~1)rBa(~1) 
## 
## Npar :  8
## -2lnL:  2395.169
## AICc :  2412.002
## 
## Beta
##                     estimate        se        lcl        ucl
## PsiA:(Intercept)   0.9244542 0.2836842  0.3684331  1.4804753
## PsiBA:(Intercept)  2.4147570 0.7766575  0.8925083  3.9370057
## PsiBa:(Intercept) -0.9648749 0.5621798 -2.0667473  0.1369976
## pA:(Intercept)    -0.5662061 0.6739858 -1.8872182  0.7548060
## pB:(Intercept)    -0.8931236 0.3503614 -1.5798318 -0.2064153
## rA:(Intercept)    -2.5318376 0.1777977 -2.8803210 -2.1833541
## rBA:(Intercept)   -2.7247165 0.3960677 -3.5010092 -1.9484239
## rBa:(Intercept)   -2.7027629 0.1673516 -3.0307720 -2.3747537
## 
## 
## Real Parameter PsiA
##          1
##  0.7159488
## 
## 
## Real Parameter PsiBA
##          1
##  0.9179457
## 
## 
## Real Parameter PsiBa
##          1
##  0.2759032
## 
## 
## Real Parameter pA
##          1         2         3         4         5         6         7
##  0.3621127 0.3621127 0.3621127 0.3621127 0.3621127 0.3621127 0.3621127
##          8         9        10        11        12        13        14
##  0.3621127 0.3621127 0.3621127 0.3621127 0.3621127 0.3621127 0.3621127
##         15        16        17        18
##  0.3621127 0.3621127 0.3621127 0.3621127
## 
## 
## Real Parameter pB
##          1         2         3         4         5         6         7
##  0.2904657 0.2904657 0.2904657 0.2904657 0.2904657 0.2904657 0.2904657
##          8         9        10        11        12        13        14
##  0.2904657 0.2904657 0.2904657 0.2904657 0.2904657 0.2904657 0.2904657
##         15        16        17        18
##  0.2904657 0.2904657 0.2904657 0.2904657
## 
## 
## Real Parameter rA
##          1         2         3         4         5         6         7
##  0.0736562 0.0736562 0.0736562 0.0736562 0.0736562 0.0736562 0.0736562
##          8         9        10        11        12        13        14
##  0.0736562 0.0736562 0.0736562 0.0736562 0.0736562 0.0736562 0.0736562
##         15        16        17        18
##  0.0736562 0.0736562 0.0736562 0.0736562
## 
## 
## Real Parameter rBA
##          1         2         3         4         5         6         7
##  0.0615305 0.0615305 0.0615305 0.0615305 0.0615305 0.0615305 0.0615305
##          8         9        10        11        12        13        14
##  0.0615305 0.0615305 0.0615305 0.0615305 0.0615305 0.0615305 0.0615305
##         15        16        17        18
##  0.0615305 0.0615305 0.0615305 0.0615305
## 
## 
## Real Parameter rBa
##          1         2         3         4         5         6         7
##  0.0628105 0.0628105 0.0628105 0.0628105 0.0628105 0.0628105 0.0628105
##          8         9        10        11        12        13        14
##  0.0628105 0.0628105 0.0628105 0.0628105 0.0628105 0.0628105 0.0628105
##         15        16        17        18
##  0.0628105 0.0628105 0.0628105 0.0628105
## 
## 
## ***** Starting  ~1 ~1 ~1 ~1 ~1 ~1 ~1 ~SHARE 3
## 
## Note: only 6 parameters counted of 7 specified parameters
## 
## AICc and parameter count have been adjusted upward
## 
## Output summary for 2SpecConOccup model
## Name : PsiA(~1)PsiBA(~1)PsiBa(~1)pA(~1)pB(~1)rA(~1)rBA(~1)rBa() 
## 
## Npar :  7  (unadjusted=6)
## -2lnL:  2394.819
## AICc :  2409.463  (unadjusted=2407.299)
## 
## Beta
##                     estimate        se        lcl        ucl
## PsiA:(Intercept)   0.6590358 0.2731688  0.1236249  1.1944467
## PsiBA:(Intercept)  4.2797053 0.8524949  2.6088153  5.9505952
## PsiBa:(Intercept) -0.5651372 0.4154503 -1.3794199  0.2491455
## pA:(Intercept)    20.9254000 0.0000000 20.9254000 20.9254000
## pB:(Intercept)    -1.2123090 0.2684189 -1.7384102 -0.6862079
## rA:(Intercept)    -2.2678667 0.1222930 -2.5075610 -2.0281725
## rBA:(Intercept)   -2.8326722 0.1242855 -3.0762717 -2.5890727
## 
## 
## Real Parameter PsiA
##          1
##  0.6590438
## 
## 
## Real Parameter PsiBA
##          1
##  0.9863424
## 
## 
## Real Parameter PsiBa
##          1
##  0.3623596
## 
## 
## Real Parameter pA
##  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
##  1 1 1 1 1 1 1 1 1  1  1  1  1  1  1  1  1  1
## 
## 
## Real Parameter pB
##          1         2         3         4         5         6         7
##  0.2292927 0.2292927 0.2292927 0.2292927 0.2292927 0.2292927 0.2292927
##          8         9        10        11        12        13        14
##  0.2292927 0.2292927 0.2292927 0.2292927 0.2292927 0.2292927 0.2292927
##         15        16        17        18
##  0.2292927 0.2292927 0.2292927 0.2292927
## 
## 
## Real Parameter rA
##          1         2         3         4         5         6         7
##  0.0938194 0.0938194 0.0938194 0.0938194 0.0938194 0.0938194 0.0938194
##          8         9        10        11        12        13        14
##  0.0938194 0.0938194 0.0938194 0.0938194 0.0938194 0.0938194 0.0938194
##         15        16        17        18
##  0.0938194 0.0938194 0.0938194 0.0938194
## 
## 
## Real Parameter rBA
##         1        2        3        4        5        6        7        8
##  0.055584 0.055584 0.055584 0.055584 0.055584 0.055584 0.055584 0.055584
##         9       10       11       12       13       14       15       16
##  0.055584 0.055584 0.055584 0.055584 0.055584 0.055584 0.055584 0.055584
##        17       18
##  0.055584 0.055584
## 
## 
## Real Parameter rBa
##         1        2        3        4        5        6        7        8
##  0.055584 0.055584 0.055584 0.055584 0.055584 0.055584 0.055584 0.055584
##         9       10       11       12       13       14       15       16
##  0.055584 0.055584 0.055584 0.055584 0.055584 0.055584 0.055584 0.055584
##        17       18
##  0.055584 0.055584
## 
## 
## ***** Starting  ~1 ~1 ~SHARE ~1 ~1 ~1 ~1 ~1 4 
## 
## Output summary for 2SpecConOccup model
## Name : PsiA(~1)PsiBA(~1)PsiBa()pA(~1)pB(~1)rA(~1)rBA(~1)rBa(~1) 
## 
## Npar :  7
## -2lnL:  2422.278
## AICc :  2436.922
## 
## Beta
##                     estimate        se       lcl        ucl
## PsiA:(Intercept)   2.2730503 0.4424141  1.405919  3.1401820
## PsiBA:(Intercept)  2.2927617 0.4769166  1.358005  3.2275182
## pA:(Intercept)    -0.7625181 0.3378840 -1.424771 -0.1002655
## pB:(Intercept)    -0.8772258 0.2504671 -1.368141 -0.3863103
## rA:(Intercept)    -2.8620846 0.1175235 -3.092431 -2.6317386
## rBA:(Intercept)   -2.6529489 0.3767958 -3.391469 -1.9144290
## rBa:(Intercept)   -2.9866548 0.1274735 -3.236503 -2.7368067
## 
## 
## Real Parameter PsiA
##          1
##  0.9066203
## 
## 
## Real Parameter PsiBA
##          1
##  0.9082758
## 
## 
## Real Parameter PsiBa
##          1
##  0.9082758
## 
## 
## Real Parameter pA
##          1         2         3         4         5         6         7
##  0.3180998 0.3180998 0.3180998 0.3180998 0.3180998 0.3180998 0.3180998
##          8         9        10        11        12        13        14
##  0.3180998 0.3180998 0.3180998 0.3180998 0.3180998 0.3180998 0.3180998
##         15        16        17        18
##  0.3180998 0.3180998 0.3180998 0.3180998
## 
## 
## Real Parameter pB
##         1        2        3        4        5        6        7        8
##  0.293753 0.293753 0.293753 0.293753 0.293753 0.293753 0.293753 0.293753
##         9       10       11       12       13       14       15       16
##  0.293753 0.293753 0.293753 0.293753 0.293753 0.293753 0.293753 0.293753
##        17       18
##  0.293753 0.293753
## 
## 
## Real Parameter rA
##        1       2       3       4       5       6       7       8       9
##  0.05406 0.05406 0.05406 0.05406 0.05406 0.05406 0.05406 0.05406 0.05406
##       10      11      12      13      14      15      16      17      18
##  0.05406 0.05406 0.05406 0.05406 0.05406 0.05406 0.05406 0.05406 0.05406
## 
## 
## Real Parameter rBA
##          1         2         3         4         5         6         7
##  0.0658075 0.0658075 0.0658075 0.0658075 0.0658075 0.0658075 0.0658075
##          8         9        10        11        12        13        14
##  0.0658075 0.0658075 0.0658075 0.0658075 0.0658075 0.0658075 0.0658075
##         15        16        17        18
##  0.0658075 0.0658075 0.0658075 0.0658075
## 
## 
## Real Parameter rBa
##          1         2         3         4         5         6         7
##  0.0480324 0.0480324 0.0480324 0.0480324 0.0480324 0.0480324 0.0480324
##          8         9        10        11        12        13        14
##  0.0480324 0.0480324 0.0480324 0.0480324 0.0480324 0.0480324 0.0480324
##         15        16        17        18
##  0.0480324 0.0480324 0.0480324 0.0480324
## 
## 
## ***** Starting  ~1 ~1 ~SHARE ~1 ~1 ~1 ~1 ~SHARE 5
## 
## Note: only 5 parameters counted of 6 specified parameters
## 
## AICc and parameter count have been adjusted upward
## 
## Output summary for 2SpecConOccup model
## Name : PsiA(~1)PsiBA(~1)PsiBa()pA(~1)pB(~1)rA(~1)rBA(~1)rBa() 
## 
## Npar :  6  (unadjusted=5)
## -2lnL:  2431.749
## AICc :  2444.229  (unadjusted=2442.0898)
## 
## Beta
##                    estimate        se       lcl        ucl
## PsiA:(Intercept)   2.294224 0.3912768  1.527322  3.0611270
## PsiBA:(Intercept)  4.441123 0.8129395  2.847761  6.0344842
## pA:(Intercept)    20.102175 0.0000000 20.102175 20.1021750
## pB:(Intercept)    -0.966923 0.2329031 -1.423413 -0.5104328
## rA:(Intercept)    -2.639570 0.0875883 -2.811243 -2.4678967
## rBA:(Intercept)   -3.077571 0.1169311 -3.306756 -2.8483865
## 
## 
## Real Parameter PsiA
##          1
##  0.9083976
## 
## 
## Real Parameter PsiBA
##          1
##  0.9883545
## 
## 
## Real Parameter PsiBa
##          1
##  0.9883545
## 
## 
## Real Parameter pA
##  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
##  1 1 1 1 1 1 1 1 1  1  1  1  1  1  1  1  1  1
## 
## 
## Real Parameter pB
##          1         2         3         4         5         6         7
##  0.2754942 0.2754942 0.2754942 0.2754942 0.2754942 0.2754942 0.2754942
##          8         9        10        11        12        13        14
##  0.2754942 0.2754942 0.2754942 0.2754942 0.2754942 0.2754942 0.2754942
##         15        16        17        18
##  0.2754942 0.2754942 0.2754942 0.2754942
## 
## 
## Real Parameter rA
##          1         2         3         4         5         6         7
##  0.0666348 0.0666348 0.0666348 0.0666348 0.0666348 0.0666348 0.0666348
##          8         9        10        11        12        13        14
##  0.0666348 0.0666348 0.0666348 0.0666348 0.0666348 0.0666348 0.0666348
##         15        16        17        18
##  0.0666348 0.0666348 0.0666348 0.0666348
## 
## 
## Real Parameter rBA
##         1        2        3        4        5        6        7        8
##  0.044042 0.044042 0.044042 0.044042 0.044042 0.044042 0.044042 0.044042
##         9       10       11       12       13       14       15       16
##  0.044042 0.044042 0.044042 0.044042 0.044042 0.044042 0.044042 0.044042
##        17       18
##  0.044042 0.044042
## 
## 
## Real Parameter rBa
##         1        2        3        4        5        6        7        8
##  0.044042 0.044042 0.044042 0.044042 0.044042 0.044042 0.044042 0.044042
##         9       10       11       12       13       14       15       16
##  0.044042 0.044042 0.044042 0.044042 0.044042 0.044042 0.044042 0.044042
##        17       18
##  0.044042 0.044042
# examine individual model results
model.number <-1

summary(model.fits[[model.number]])
## Output summary for 2SpecConOccup model
## Name : PsiA(~elev_std)PsiBA(~elev_std)PsiBa(~elev_std)pA(~1)pB(~1)rA(~1)rBA(~1)rBa() 
## 
## Npar :  10  (unadjusted=9)
## -2lnL:  2360.583
## AICc :  2381.87  (unadjusted=2379.6297)
## 
## Beta
##                     estimate           se           lcl          ucl
## PsiA:(Intercept)   0.4927662    0.2342841     0.0335693    0.9519630
## PsiA:elev_std      0.3729369    0.2104800    -0.0396040    0.7854778
## PsiBA:(Intercept)  4.4911960    1.0479925     2.4371306    6.5452614
## PsiBA:elev_std    -0.7055059    0.8999841    -2.4694747    1.0584629
## PsiBa:(Intercept) -1.6751620    0.8887774    -3.4171658    0.0668418
## PsiBa:elev_std    -3.1110476    1.4590367    -5.9707596   -0.2513357
## pA:(Intercept)    16.2869740 1186.2913000 -2308.8441000 2341.4180000
## pB:(Intercept)    -1.4079082    0.1902395    -1.7807777   -1.0350387
## rA:(Intercept)    -2.1926439    0.1152314    -2.4184976   -1.9667903
## rBA:(Intercept)   -2.8737722    0.1206942    -3.1103327   -2.6372116
## 
## 
## Real Parameter PsiA
##          1
##  0.6207579
## 
## 
## Real Parameter PsiBA
##         1
##  0.988917
## 
## 
## Real Parameter PsiBa
##          1
##  0.1577372
## 
## 
## Real Parameter pA
##          1         2         3         4         5         6         7
##  0.9999999 0.9999999 0.9999999 0.9999999 0.9999999 0.9999999 0.9999999
##          8         9        10        11        12        13        14
##  0.9999999 0.9999999 0.9999999 0.9999999 0.9999999 0.9999999 0.9999999
##         15        16        17        18
##  0.9999999 0.9999999 0.9999999 0.9999999
## 
## 
## Real Parameter pB
##          1         2         3         4         5         6         7
##  0.1965642 0.1965642 0.1965642 0.1965642 0.1965642 0.1965642 0.1965642
##          8         9        10        11        12        13        14
##  0.1965642 0.1965642 0.1965642 0.1965642 0.1965642 0.1965642 0.1965642
##         15        16        17        18
##  0.1965642 0.1965642 0.1965642 0.1965642
## 
## 
## Real Parameter rA
##         1        2        3        4        5        6        7        8
##  0.100413 0.100413 0.100413 0.100413 0.100413 0.100413 0.100413 0.100413
##         9       10       11       12       13       14       15       16
##  0.100413 0.100413 0.100413 0.100413 0.100413 0.100413 0.100413 0.100413
##        17       18
##  0.100413 0.100413
## 
## 
## Real Parameter rBA
##          1         2         3         4         5         6         7
##  0.0534654 0.0534654 0.0534654 0.0534654 0.0534654 0.0534654 0.0534654
##          8         9        10        11        12        13        14
##  0.0534654 0.0534654 0.0534654 0.0534654 0.0534654 0.0534654 0.0534654
##         15        16        17        18
##  0.0534654 0.0534654 0.0534654 0.0534654
## 
## 
## Real Parameter rBa
##          1         2         3         4         5         6         7
##  0.0534654 0.0534654 0.0534654 0.0534654 0.0534654 0.0534654 0.0534654
##          8         9        10        11        12        13        14
##  0.0534654 0.0534654 0.0534654 0.0534654 0.0534654 0.0534654 0.0534654
##         15        16        17        18
##  0.0534654 0.0534654 0.0534654 0.0534654
model.fits[[model.number]]$results$real
##                 estimate           se           lcl       ucl fixed
## PsiA g1 a0 t1  0.6207579 0.0551546000  5.083915e-01 0.7215098      
## PsiBA g1 a0 t1 0.9889170 0.0114862000  9.196152e-01 0.9985652      
## PsiBa g1 a0 t1 0.1577372 0.1180795000  3.176330e-02 0.5167042      
## pA g1 a0 t1    0.9999999 0.0001001955 6.586088e-302 1.0000000      
## pB g1 a0 t1    0.1965642 0.0300439000  1.442071e-01 0.2621084      
## rA g1 a0 t1    0.1004130 0.0104089000  8.177300e-02 0.1227341      
## rBA g1 a0 t1   0.0534654 0.0061080000  4.268300e-02 0.0667816      
##                   note
## PsiA g1 a0 t1         
## PsiBA g1 a0 t1        
## PsiBa g1 a0 t1        
## pA g1 a0 t1           
## pB g1 a0 t1           
## rA g1 a0 t1           
## rBA g1 a0 t1
model.fits[[model.number]]$results$beta
##                     estimate           se           lcl          ucl
## PsiA:(Intercept)   0.4927662    0.2342841     0.0335693    0.9519630
## PsiA:elev_std      0.3729369    0.2104800    -0.0396040    0.7854778
## PsiBA:(Intercept)  4.4911960    1.0479925     2.4371306    6.5452614
## PsiBA:elev_std    -0.7055059    0.8999841    -2.4694747    1.0584629
## PsiBa:(Intercept) -1.6751620    0.8887774    -3.4171658    0.0668418
## PsiBa:elev_std    -3.1110476    1.4590367    -5.9707596   -0.2513357
## pA:(Intercept)    16.2869740 1186.2913000 -2308.8441000 2341.4180000
## pB:(Intercept)    -1.4079082    0.1902395    -1.7807777   -1.0350387
## rA:(Intercept)    -2.1926439    0.1152314    -2.4184976   -1.9667903
## rBA:(Intercept)   -2.8737722    0.1206942    -3.1103327   -2.6372116
model.fits[[model.number]]$results$derived
## $`Species Interaction Factor`
##   estimate        se      lcl      ucl
## 1 1.467892 0.1130743 1.246267 1.689518
## 
## $`Occupancy of Species B`
##    estimate         se       lcl       ucl
## 1 0.6736986 0.05248427 0.5639011 0.7672615
## 
## $`Occupancy of Both Species`
##   estimate         se       lcl       ucl
## 1 0.613878 0.05527848 0.5016372 0.7151922
get.real(model.fits[[model.number]], "PsiA", se=TRUE)
##               all.diff.index par.index  estimate        se       lcl
## PsiA g1 a0 t1              1         1 0.6207579 0.0551546 0.5083915
##                     ucl fixed    note group age time Age Time
## PsiA g1 a0 t1 0.7215098                   1   0    1   0    0
get.real(model.fits[[model.number]], "PsiBA", se=TRUE)
##                all.diff.index par.index estimate        se       lcl
## PsiBA g1 a0 t1              2         2 0.988917 0.0114862 0.9196152
##                      ucl fixed    note group age time Age Time
## PsiBA g1 a0 t1 0.9985652                   1   0    1   0    0
get.real(model.fits[[model.number]], "PsiBa", se=TRUE)
##                all.diff.index par.index  estimate        se       lcl
## PsiBa g1 a0 t1              3         3 0.1577372 0.1180795 0.0317633
##                      ucl fixed    note group age time Age Time
## PsiBa g1 a0 t1 0.5167042                   1   0    1   0    0
get.real(model.fits[[model.number]], "pA", se=TRUE)
##               all.diff.index par.index  estimate           se
## pA g1 a0 t1                4         4 0.9999999 0.0001001955
## pA g1 a1 t2                5         4 0.9999999 0.0001001955
## pA g1 a2 t3                6         4 0.9999999 0.0001001955
## pA g1 a3 t4                7         4 0.9999999 0.0001001955
## pA g1 a4 t5                8         4 0.9999999 0.0001001955
## pA g1 a5 t6                9         4 0.9999999 0.0001001955
## pA g1 a6 t7               10         4 0.9999999 0.0001001955
## pA g1 a7 t8               11         4 0.9999999 0.0001001955
## pA g1 a8 t9               12         4 0.9999999 0.0001001955
## pA g1 a9 t10              13         4 0.9999999 0.0001001955
## pA g1 a10 t11             14         4 0.9999999 0.0001001955
## pA g1 a11 t12             15         4 0.9999999 0.0001001955
## pA g1 a12 t13             16         4 0.9999999 0.0001001955
## pA g1 a13 t14             17         4 0.9999999 0.0001001955
## pA g1 a14 t15             18         4 0.9999999 0.0001001955
## pA g1 a15 t16             19         4 0.9999999 0.0001001955
## pA g1 a16 t17             20         4 0.9999999 0.0001001955
## pA g1 a17 t18             21         4 0.9999999 0.0001001955
##                         lcl ucl fixed    note group age time Age Time
## pA g1 a0 t1   6.586088e-302   1                   1   0    1   0    0
## pA g1 a1 t2   6.586088e-302   1                   1   1    2   1    1
## pA g1 a2 t3   6.586088e-302   1                   1   2    3   2    2
## pA g1 a3 t4   6.586088e-302   1                   1   3    4   3    3
## pA g1 a4 t5   6.586088e-302   1                   1   4    5   4    4
## pA g1 a5 t6   6.586088e-302   1                   1   5    6   5    5
## pA g1 a6 t7   6.586088e-302   1                   1   6    7   6    6
## pA g1 a7 t8   6.586088e-302   1                   1   7    8   7    7
## pA g1 a8 t9   6.586088e-302   1                   1   8    9   8    8
## pA g1 a9 t10  6.586088e-302   1                   1   9   10   9    9
## pA g1 a10 t11 6.586088e-302   1                   1  10   11  10   10
## pA g1 a11 t12 6.586088e-302   1                   1  11   12  11   11
## pA g1 a12 t13 6.586088e-302   1                   1  12   13  12   12
## pA g1 a13 t14 6.586088e-302   1                   1  13   14  13   13
## pA g1 a14 t15 6.586088e-302   1                   1  14   15  14   14
## pA g1 a15 t16 6.586088e-302   1                   1  15   16  15   15
## pA g1 a16 t17 6.586088e-302   1                   1  16   17  16   16
## pA g1 a17 t18 6.586088e-302   1                   1  17   18  17   17
get.real(model.fits[[model.number]], "pB", se=TRUE)
##               all.diff.index par.index  estimate        se       lcl
## pB g1 a0 t1               22         5 0.1965642 0.0300439 0.1442071
## pB g1 a1 t2               23         5 0.1965642 0.0300439 0.1442071
## pB g1 a2 t3               24         5 0.1965642 0.0300439 0.1442071
## pB g1 a3 t4               25         5 0.1965642 0.0300439 0.1442071
## pB g1 a4 t5               26         5 0.1965642 0.0300439 0.1442071
## pB g1 a5 t6               27         5 0.1965642 0.0300439 0.1442071
## pB g1 a6 t7               28         5 0.1965642 0.0300439 0.1442071
## pB g1 a7 t8               29         5 0.1965642 0.0300439 0.1442071
## pB g1 a8 t9               30         5 0.1965642 0.0300439 0.1442071
## pB g1 a9 t10              31         5 0.1965642 0.0300439 0.1442071
## pB g1 a10 t11             32         5 0.1965642 0.0300439 0.1442071
## pB g1 a11 t12             33         5 0.1965642 0.0300439 0.1442071
## pB g1 a12 t13             34         5 0.1965642 0.0300439 0.1442071
## pB g1 a13 t14             35         5 0.1965642 0.0300439 0.1442071
## pB g1 a14 t15             36         5 0.1965642 0.0300439 0.1442071
## pB g1 a15 t16             37         5 0.1965642 0.0300439 0.1442071
## pB g1 a16 t17             38         5 0.1965642 0.0300439 0.1442071
## pB g1 a17 t18             39         5 0.1965642 0.0300439 0.1442071
##                     ucl fixed    note group age time Age Time
## pB g1 a0 t1   0.2621084                   1   0    1   0    0
## pB g1 a1 t2   0.2621084                   1   1    2   1    1
## pB g1 a2 t3   0.2621084                   1   2    3   2    2
## pB g1 a3 t4   0.2621084                   1   3    4   3    3
## pB g1 a4 t5   0.2621084                   1   4    5   4    4
## pB g1 a5 t6   0.2621084                   1   5    6   5    5
## pB g1 a6 t7   0.2621084                   1   6    7   6    6
## pB g1 a7 t8   0.2621084                   1   7    8   7    7
## pB g1 a8 t9   0.2621084                   1   8    9   8    8
## pB g1 a9 t10  0.2621084                   1   9   10   9    9
## pB g1 a10 t11 0.2621084                   1  10   11  10   10
## pB g1 a11 t12 0.2621084                   1  11   12  11   11
## pB g1 a12 t13 0.2621084                   1  12   13  12   12
## pB g1 a13 t14 0.2621084                   1  13   14  13   13
## pB g1 a14 t15 0.2621084                   1  14   15  14   14
## pB g1 a15 t16 0.2621084                   1  15   16  15   15
## pB g1 a16 t17 0.2621084                   1  16   17  16   16
## pB g1 a17 t18 0.2621084                   1  17   18  17   17
get.real(model.fits[[model.number]], "rA", se=TRUE)
##               all.diff.index par.index estimate        se      lcl
## rA g1 a0 t1               40         6 0.100413 0.0104089 0.081773
## rA g1 a1 t2               41         6 0.100413 0.0104089 0.081773
## rA g1 a2 t3               42         6 0.100413 0.0104089 0.081773
## rA g1 a3 t4               43         6 0.100413 0.0104089 0.081773
## rA g1 a4 t5               44         6 0.100413 0.0104089 0.081773
## rA g1 a5 t6               45         6 0.100413 0.0104089 0.081773
## rA g1 a6 t7               46         6 0.100413 0.0104089 0.081773
## rA g1 a7 t8               47         6 0.100413 0.0104089 0.081773
## rA g1 a8 t9               48         6 0.100413 0.0104089 0.081773
## rA g1 a9 t10              49         6 0.100413 0.0104089 0.081773
## rA g1 a10 t11             50         6 0.100413 0.0104089 0.081773
## rA g1 a11 t12             51         6 0.100413 0.0104089 0.081773
## rA g1 a12 t13             52         6 0.100413 0.0104089 0.081773
## rA g1 a13 t14             53         6 0.100413 0.0104089 0.081773
## rA g1 a14 t15             54         6 0.100413 0.0104089 0.081773
## rA g1 a15 t16             55         6 0.100413 0.0104089 0.081773
## rA g1 a16 t17             56         6 0.100413 0.0104089 0.081773
## rA g1 a17 t18             57         6 0.100413 0.0104089 0.081773
##                     ucl fixed    note group age time Age Time
## rA g1 a0 t1   0.1227341                   1   0    1   0    0
## rA g1 a1 t2   0.1227341                   1   1    2   1    1
## rA g1 a2 t3   0.1227341                   1   2    3   2    2
## rA g1 a3 t4   0.1227341                   1   3    4   3    3
## rA g1 a4 t5   0.1227341                   1   4    5   4    4
## rA g1 a5 t6   0.1227341                   1   5    6   5    5
## rA g1 a6 t7   0.1227341                   1   6    7   6    6
## rA g1 a7 t8   0.1227341                   1   7    8   7    7
## rA g1 a8 t9   0.1227341                   1   8    9   8    8
## rA g1 a9 t10  0.1227341                   1   9   10   9    9
## rA g1 a10 t11 0.1227341                   1  10   11  10   10
## rA g1 a11 t12 0.1227341                   1  11   12  11   11
## rA g1 a12 t13 0.1227341                   1  12   13  12   12
## rA g1 a13 t14 0.1227341                   1  13   14  13   13
## rA g1 a14 t15 0.1227341                   1  14   15  14   14
## rA g1 a15 t16 0.1227341                   1  15   16  15   15
## rA g1 a16 t17 0.1227341                   1  16   17  16   16
## rA g1 a17 t18 0.1227341                   1  17   18  17   17
get.real(model.fits[[model.number]], "rBA", se=TRUE)
##                all.diff.index par.index  estimate       se      lcl
## rBA g1 a0 t1               58         7 0.0534654 0.006108 0.042683
## rBA g1 a1 t2               59         7 0.0534654 0.006108 0.042683
## rBA g1 a2 t3               60         7 0.0534654 0.006108 0.042683
## rBA g1 a3 t4               61         7 0.0534654 0.006108 0.042683
## rBA g1 a4 t5               62         7 0.0534654 0.006108 0.042683
## rBA g1 a5 t6               63         7 0.0534654 0.006108 0.042683
## rBA g1 a6 t7               64         7 0.0534654 0.006108 0.042683
## rBA g1 a7 t8               65         7 0.0534654 0.006108 0.042683
## rBA g1 a8 t9               66         7 0.0534654 0.006108 0.042683
## rBA g1 a9 t10              67         7 0.0534654 0.006108 0.042683
## rBA g1 a10 t11             68         7 0.0534654 0.006108 0.042683
## rBA g1 a11 t12             69         7 0.0534654 0.006108 0.042683
## rBA g1 a12 t13             70         7 0.0534654 0.006108 0.042683
## rBA g1 a13 t14             71         7 0.0534654 0.006108 0.042683
## rBA g1 a14 t15             72         7 0.0534654 0.006108 0.042683
## rBA g1 a15 t16             73         7 0.0534654 0.006108 0.042683
## rBA g1 a16 t17             74         7 0.0534654 0.006108 0.042683
## rBA g1 a17 t18             75         7 0.0534654 0.006108 0.042683
##                      ucl fixed    note group age time Age Time
## rBA g1 a0 t1   0.0667816                   1   0    1   0    0
## rBA g1 a1 t2   0.0667816                   1   1    2   1    1
## rBA g1 a2 t3   0.0667816                   1   2    3   2    2
## rBA g1 a3 t4   0.0667816                   1   3    4   3    3
## rBA g1 a4 t5   0.0667816                   1   4    5   4    4
## rBA g1 a5 t6   0.0667816                   1   5    6   5    5
## rBA g1 a6 t7   0.0667816                   1   6    7   6    6
## rBA g1 a7 t8   0.0667816                   1   7    8   7    7
## rBA g1 a8 t9   0.0667816                   1   8    9   8    8
## rBA g1 a9 t10  0.0667816                   1   9   10   9    9
## rBA g1 a10 t11 0.0667816                   1  10   11  10   10
## rBA g1 a11 t12 0.0667816                   1  11   12  11   11
## rBA g1 a12 t13 0.0667816                   1  12   13  12   12
## rBA g1 a13 t14 0.0667816                   1  13   14  13   13
## rBA g1 a14 t15 0.0667816                   1  14   15  14   14
## rBA g1 a15 t16 0.0667816                   1  15   16  15   15
## rBA g1 a16 t17 0.0667816                   1  16   17  16   16
## rBA g1 a17 t18 0.0667816                   1  17   18  17   17
get.real(model.fits[[model.number]], "rBa", se=TRUE)
##                all.diff.index par.index  estimate       se      lcl
## rBa g1 a0 t1               76         7 0.0534654 0.006108 0.042683
## rBa g1 a1 t2               77         7 0.0534654 0.006108 0.042683
## rBa g1 a2 t3               78         7 0.0534654 0.006108 0.042683
## rBa g1 a3 t4               79         7 0.0534654 0.006108 0.042683
## rBa g1 a4 t5               80         7 0.0534654 0.006108 0.042683
## rBa g1 a5 t6               81         7 0.0534654 0.006108 0.042683
## rBa g1 a6 t7               82         7 0.0534654 0.006108 0.042683
## rBa g1 a7 t8               83         7 0.0534654 0.006108 0.042683
## rBa g1 a8 t9               84         7 0.0534654 0.006108 0.042683
## rBa g1 a9 t10              85         7 0.0534654 0.006108 0.042683
## rBa g1 a10 t11             86         7 0.0534654 0.006108 0.042683
## rBa g1 a11 t12             87         7 0.0534654 0.006108 0.042683
## rBa g1 a12 t13             88         7 0.0534654 0.006108 0.042683
## rBa g1 a13 t14             89         7 0.0534654 0.006108 0.042683
## rBa g1 a14 t15             90         7 0.0534654 0.006108 0.042683
## rBa g1 a15 t16             91         7 0.0534654 0.006108 0.042683
## rBa g1 a16 t17             92         7 0.0534654 0.006108 0.042683
## rBa g1 a17 t18             93         7 0.0534654 0.006108 0.042683
##                      ucl fixed    note group age time Age Time
## rBa g1 a0 t1   0.0667816                   1   0    1   0    0
## rBa g1 a1 t2   0.0667816                   1   1    2   1    1
## rBa g1 a2 t3   0.0667816                   1   2    3   2    2
## rBa g1 a3 t4   0.0667816                   1   3    4   3    3
## rBa g1 a4 t5   0.0667816                   1   4    5   4    4
## rBa g1 a5 t6   0.0667816                   1   5    6   5    5
## rBa g1 a6 t7   0.0667816                   1   6    7   6    6
## rBa g1 a7 t8   0.0667816                   1   7    8   7    7
## rBa g1 a8 t9   0.0667816                   1   8    9   8    8
## rBa g1 a9 t10  0.0667816                   1   9   10   9    9
## rBa g1 a10 t11 0.0667816                   1  10   11  10   10
## rBa g1 a11 t12 0.0667816                   1  11   12  11   11
## rBa g1 a12 t13 0.0667816                   1  12   13  12   12
## rBa g1 a13 t14 0.0667816                   1  13   14  13   13
## rBa g1 a14 t15 0.0667816                   1  14   15  14   14
## rBa g1 a15 t16 0.0667816                   1  15   16  15   15
## rBa g1 a16 t17 0.0667816                   1  16   17  16   16
## rBa g1 a17 t18 0.0667816                   1  17   18  17   17
# collect models and make AICc table

model.set <- RMark::collect.models( type="2SpecConOccup")
model.set
##                                                                           model
## 1 PsiA(~elev_std)PsiBA(~elev_std)PsiBa(~elev_std)pA(~1)pB(~1)rA(~1)rBA(~1)rBa()
## 3                      PsiA(~1)PsiBA(~1)PsiBa(~1)pA(~1)pB(~1)rA(~1)rBA(~1)rBa()
## 2                    PsiA(~1)PsiBA(~1)PsiBa(~1)pA(~1)pB(~1)rA(~1)rBA(~1)rBa(~1)
## 4                      PsiA(~1)PsiBA(~1)PsiBa()pA(~1)pB(~1)rA(~1)rBA(~1)rBa(~1)
## 5                        PsiA(~1)PsiBA(~1)PsiBa()pA(~1)pB(~1)rA(~1)rBA(~1)rBa()
##   npar     AICc DeltaAICc       weight Deviance
## 1   10 2381.870   0.00000 9.999987e-01 2360.583
## 3    7 2409.463  27.59293 1.019228e-06 2394.819
## 2    8 2412.002  30.13202 2.863613e-07 2395.169
## 4    7 2436.922  55.05233 1.110550e-12 2422.278
## 5    6 2444.229  62.35915 2.876617e-14 2431.749
names(model.set)
## [1] "m...001"     "m...002"     "m...003"     "m...004"     "m...005"    
## [6] "model.table"
model.set$model.table
##        PsiA     PsiBA     PsiBa pA pB rA rBA rBa
## 1 ~elev_std ~elev_std ~elev_std ~1 ~1 ~1  ~1    
## 3        ~1        ~1        ~1 ~1 ~1 ~1  ~1    
## 2        ~1        ~1        ~1 ~1 ~1 ~1  ~1  ~1
## 4        ~1        ~1           ~1 ~1 ~1  ~1  ~1
## 5        ~1        ~1           ~1 ~1 ~1  ~1    
##                                                                           model
## 1 PsiA(~elev_std)PsiBA(~elev_std)PsiBa(~elev_std)pA(~1)pB(~1)rA(~1)rBA(~1)rBa()
## 3                      PsiA(~1)PsiBA(~1)PsiBa(~1)pA(~1)pB(~1)rA(~1)rBA(~1)rBa()
## 2                    PsiA(~1)PsiBA(~1)PsiBa(~1)pA(~1)pB(~1)rA(~1)rBA(~1)rBa(~1)
## 4                      PsiA(~1)PsiBA(~1)PsiBa()pA(~1)pB(~1)rA(~1)rBA(~1)rBa(~1)
## 5                        PsiA(~1)PsiBA(~1)PsiBa()pA(~1)pB(~1)rA(~1)rBA(~1)rBa()
##   npar     AICc DeltaAICc       weight Deviance
## 1   10 2381.870   0.00000 9.999987e-01 2360.583
## 3    7 2409.463  27.59293 1.019228e-06 2394.819
## 2    8 2412.002  30.13202 2.863613e-07 2395.169
## 4    7 2436.922  55.05233 1.110550e-12 2422.278
## 5    6 2444.229  62.35915 2.876617e-14 2431.749
# model averaged values at average covariate value

PsiA.ma <- RMark::model.average(model.set, param="PsiA")
## Warning in get.real(model, parameter, design = model$design.matrix, se = TRUE, : 
## Improper V-C matrix for beta estimates. Some variances non-positive.

## Warning in get.real(model, parameter, design = model$design.matrix, se = TRUE, : 
## Improper V-C matrix for beta estimates. Some variances non-positive.
PsiA.ma
##               par.index  estimate         se fixed    note group age time
## PsiA g1 a0 t1         1 0.6207579 0.05515463                   1   0    1
##               Age Time
## PsiA g1 a0 t1   0    0
# make predictions as a function of distance
# We need to know the indices to the parameters
# Look at the all.diff.index values to get thei correct index number


get.real(model.fits[[model.number]], "PsiA", se=TRUE)
##               all.diff.index par.index  estimate        se       lcl
## PsiA g1 a0 t1              1         1 0.6207579 0.0551546 0.5083915
##                     ucl fixed    note group age time Age Time
## PsiA g1 a0 t1 0.7215098                   1   0    1   0    0
PsiA.ma.p <- RMark::covariate.predictions(model.set, indices=1, data=input.history)$estimates
PsiA.ma.p$parameter <- 'PsiA'

get.real(model.fits[[model.number]], "PsiBa", se=TRUE)
##                all.diff.index par.index  estimate        se       lcl
## PsiBa g1 a0 t1              3         3 0.1577372 0.1180795 0.0317633
##                      ucl fixed    note group age time Age Time
## PsiBa g1 a0 t1 0.5167042                   1   0    1   0    0
PsiBa.ma.p <- RMark::covariate.predictions(model.set, indices=3, data=input.history)$estimates
PsiBa.ma.p$parameter <- 'PsiBa'

get.real(model.fits[[model.number]], "PsiBA", se=TRUE)
##                all.diff.index par.index estimate        se       lcl
## PsiBA g1 a0 t1              2         2 0.988917 0.0114862 0.9196152
##                      ucl fixed    note group age time Age Time
## PsiBA g1 a0 t1 0.9985652                   1   0    1   0    0
PsiBA.ma.p <- RMark::covariate.predictions(model.set, indices=2, data=input.history)$estimates
PsiBA.ma.p$parameter <- 'PsiBA'

# Not easy to get the se of dervied parameters at the covariate values
PsiB.ma.p <- data.frame(estimate=PsiBA.ma.p$estimate*PsiA.ma.p$estimate +
                                 PsiBa.ma.p$estimate*(1-PsiA.ma.p$estimate),
                        elev=PsiA.ma.p$elev, stringsAsFactors=FALSE)
PsiB.ma.p$parameter <- "PsiB"


plotdata <- plyr::rbind.fill(PsiA.ma.p,
                             PsiBA.ma.p,
                             PsiBa.ma.p,
                             PsiB.ma.p)

# It is clear that the fit is not satisfactory with a huge se for PsiBa and very steep decline.
# Try reversing the species and you get a much better fit
ggplot(data=plotdata, aes(x=elev, y=estimate))+
   ggtitle("Effects of elevation on species co-occurance")+
   geom_point()+
   geom_ribbon(aes(ymin=lcl, ymax=ucl), alpha=0.2)+
   facet_wrap(~parameter, ncol=2)

# Why is psiBa so bad? This may be a case of complete separation.
# The detection probabilities are all fairly large so that over 5 visits, there is almost certain detection
# if the species is present. Consequently, the observed occupancy is likely a pretty good indication of the 
# actual occupancy.
RMark::model.average(model.set, param="pA")
## 
## Model 3dropped from the model averaging because one or more beta variances are not positive
## 
## Model 5dropped from the model averaging because one or more beta variances are not positive
##               par.index  estimate           se fixed    note group age
## pA g1 a0 t1           4 0.9999997 0.0003653775                   1   0
## pA g1 a1 t2           5 0.9999997 0.0003653775                   1   1
## pA g1 a2 t3           6 0.9999997 0.0003653775                   1   2
## pA g1 a3 t4           7 0.9999997 0.0003653775                   1   3
## pA g1 a4 t5           8 0.9999997 0.0003653775                   1   4
## pA g1 a5 t6           9 0.9999997 0.0003653775                   1   5
## pA g1 a6 t7          10 0.9999997 0.0003653775                   1   6
## pA g1 a7 t8          11 0.9999997 0.0003653775                   1   7
## pA g1 a8 t9          12 0.9999997 0.0003653775                   1   8
## pA g1 a9 t10         13 0.9999997 0.0003653775                   1   9
## pA g1 a10 t11        14 0.9999997 0.0003653775                   1  10
## pA g1 a11 t12        15 0.9999997 0.0003653775                   1  11
## pA g1 a12 t13        16 0.9999997 0.0003653775                   1  12
## pA g1 a13 t14        17 0.9999997 0.0003653775                   1  13
## pA g1 a14 t15        18 0.9999997 0.0003653775                   1  14
## pA g1 a15 t16        19 0.9999997 0.0003653775                   1  15
## pA g1 a16 t17        20 0.9999997 0.0003653775                   1  16
## pA g1 a17 t18        21 0.9999997 0.0003653775                   1  17
##               time Age Time
## pA g1 a0 t1      1   0    0
## pA g1 a1 t2      2   1    1
## pA g1 a2 t3      3   2    2
## pA g1 a3 t4      4   3    3
## pA g1 a4 t5      5   4    4
## pA g1 a5 t6      6   5    5
## pA g1 a6 t7      7   6    6
## pA g1 a7 t8      8   7    7
## pA g1 a8 t9      9   8    8
## pA g1 a9 t10    10   9    9
## pA g1 a10 t11   11  10   10
## pA g1 a11 t12   12  11   11
## pA g1 a12 t13   13  12   12
## pA g1 a13 t14   14  13   13
## pA g1 a14 t15   15  14   14
## pA g1 a15 t16   16  15   15
## pA g1 a16 t17   17  16   16
## pA g1 a17 t18   18  17   17
RMark::model.average(model.set, param="pB")
## Warning in get.real(model, parameter, design = model$design.matrix, se = TRUE, : 
## Improper V-C matrix for beta estimates. Some variances non-positive.

## Warning in get.real(model, parameter, design = model$design.matrix, se = TRUE, : 
## Improper V-C matrix for beta estimates. Some variances non-positive.
##               par.index  estimate         se fixed    note group age time
## pB g1 a0 t1          22 0.1965643 0.03004401                   1   0    1
## pB g1 a1 t2          23 0.1965643 0.03004401                   1   1    2
## pB g1 a2 t3          24 0.1965643 0.03004401                   1   2    3
## pB g1 a3 t4          25 0.1965643 0.03004401                   1   3    4
## pB g1 a4 t5          26 0.1965643 0.03004401                   1   4    5
## pB g1 a5 t6          27 0.1965643 0.03004401                   1   5    6
## pB g1 a6 t7          28 0.1965643 0.03004401                   1   6    7
## pB g1 a7 t8          29 0.1965643 0.03004401                   1   7    8
## pB g1 a8 t9          30 0.1965643 0.03004401                   1   8    9
## pB g1 a9 t10         31 0.1965643 0.03004401                   1   9   10
## pB g1 a10 t11        32 0.1965643 0.03004401                   1  10   11
## pB g1 a11 t12        33 0.1965643 0.03004401                   1  11   12
## pB g1 a12 t13        34 0.1965643 0.03004401                   1  12   13
## pB g1 a13 t14        35 0.1965643 0.03004401                   1  13   14
## pB g1 a14 t15        36 0.1965643 0.03004401                   1  14   15
## pB g1 a15 t16        37 0.1965643 0.03004401                   1  15   16
## pB g1 a16 t17        38 0.1965643 0.03004401                   1  16   17
## pB g1 a17 t18        39 0.1965643 0.03004401                   1  17   18
##               Age Time
## pB g1 a0 t1     0    0
## pB g1 a1 t2     1    1
## pB g1 a2 t3     2    2
## pB g1 a3 t4     3    3
## pB g1 a4 t5     4    4
## pB g1 a5 t6     5    5
## pB g1 a6 t7     6    6
## pB g1 a7 t8     7    7
## pB g1 a8 t9     8    8
## pB g1 a9 t10    9    9
## pB g1 a10 t11  10   10
## pB g1 a11 t12  11   11
## pB g1 a12 t13  12   12
## pB g1 a13 t14  13   13
## pB g1 a14 t15  14   14
## pB g1 a15 t16  15   15
## pB g1 a16 t17  16   16
## pB g1 a17 t18  17   17
RMark::model.average(model.set, param="rA")
## Warning in get.real(model, parameter, design = model$design.matrix, se = TRUE, : 
## Improper V-C matrix for beta estimates. Some variances non-positive.

## Warning in get.real(model, parameter, design = model$design.matrix, se = TRUE, : 
## Improper V-C matrix for beta estimates. Some variances non-positive.
##               par.index estimate        se fixed    note group age time
## rA g1 a0 t1          40 0.100413 0.0104089                   1   0    1
## rA g1 a1 t2          41 0.100413 0.0104089                   1   1    2
## rA g1 a2 t3          42 0.100413 0.0104089                   1   2    3
## rA g1 a3 t4          43 0.100413 0.0104089                   1   3    4
## rA g1 a4 t5          44 0.100413 0.0104089                   1   4    5
## rA g1 a5 t6          45 0.100413 0.0104089                   1   5    6
## rA g1 a6 t7          46 0.100413 0.0104089                   1   6    7
## rA g1 a7 t8          47 0.100413 0.0104089                   1   7    8
## rA g1 a8 t9          48 0.100413 0.0104089                   1   8    9
## rA g1 a9 t10         49 0.100413 0.0104089                   1   9   10
## rA g1 a10 t11        50 0.100413 0.0104089                   1  10   11
## rA g1 a11 t12        51 0.100413 0.0104089                   1  11   12
## rA g1 a12 t13        52 0.100413 0.0104089                   1  12   13
## rA g1 a13 t14        53 0.100413 0.0104089                   1  13   14
## rA g1 a14 t15        54 0.100413 0.0104089                   1  14   15
## rA g1 a15 t16        55 0.100413 0.0104089                   1  15   16
## rA g1 a16 t17        56 0.100413 0.0104089                   1  16   17
## rA g1 a17 t18        57 0.100413 0.0104089                   1  17   18
##               Age Time
## rA g1 a0 t1     0    0
## rA g1 a1 t2     1    1
## rA g1 a2 t3     2    2
## rA g1 a3 t4     3    3
## rA g1 a4 t5     4    4
## rA g1 a5 t6     5    5
## rA g1 a6 t7     6    6
## rA g1 a7 t8     7    7
## rA g1 a8 t9     8    8
## rA g1 a9 t10    9    9
## rA g1 a10 t11  10   10
## rA g1 a11 t12  11   11
## rA g1 a12 t13  12   12
## rA g1 a13 t14  13   13
## rA g1 a14 t15  14   14
## rA g1 a15 t16  15   15
## rA g1 a16 t17  16   16
## rA g1 a17 t18  17   17
RMark::model.average(model.set, param="rBA")
## Warning in get.real(model, parameter, design = model$design.matrix, se = TRUE, : 
## Improper V-C matrix for beta estimates. Some variances non-positive.

## Warning in get.real(model, parameter, design = model$design.matrix, se = TRUE, : 
## Improper V-C matrix for beta estimates. Some variances non-positive.
##                par.index   estimate          se fixed    note group age
## rBA g1 a0 t1          58 0.05346544 0.006107968                   1   0
## rBA g1 a1 t2          59 0.05346544 0.006107968                   1   1
## rBA g1 a2 t3          60 0.05346544 0.006107968                   1   2
## rBA g1 a3 t4          61 0.05346544 0.006107968                   1   3
## rBA g1 a4 t5          62 0.05346544 0.006107968                   1   4
## rBA g1 a5 t6          63 0.05346544 0.006107968                   1   5
## rBA g1 a6 t7          64 0.05346544 0.006107968                   1   6
## rBA g1 a7 t8          65 0.05346544 0.006107968                   1   7
## rBA g1 a8 t9          66 0.05346544 0.006107968                   1   8
## rBA g1 a9 t10         67 0.05346544 0.006107968                   1   9
## rBA g1 a10 t11        68 0.05346544 0.006107968                   1  10
## rBA g1 a11 t12        69 0.05346544 0.006107968                   1  11
## rBA g1 a12 t13        70 0.05346544 0.006107968                   1  12
## rBA g1 a13 t14        71 0.05346544 0.006107968                   1  13
## rBA g1 a14 t15        72 0.05346544 0.006107968                   1  14
## rBA g1 a15 t16        73 0.05346544 0.006107968                   1  15
## rBA g1 a16 t17        74 0.05346544 0.006107968                   1  16
## rBA g1 a17 t18        75 0.05346544 0.006107968                   1  17
##                time Age Time
## rBA g1 a0 t1      1   0    0
## rBA g1 a1 t2      2   1    1
## rBA g1 a2 t3      3   2    2
## rBA g1 a3 t4      4   3    3
## rBA g1 a4 t5      5   4    4
## rBA g1 a5 t6      6   5    5
## rBA g1 a6 t7      7   6    6
## rBA g1 a7 t8      8   7    7
## rBA g1 a8 t9      9   8    8
## rBA g1 a9 t10    10   9    9
## rBA g1 a10 t11   11  10   10
## rBA g1 a11 t12   12  11   11
## rBA g1 a12 t13   13  12   12
## rBA g1 a13 t14   14  13   13
## rBA g1 a14 t15   15  14   14
## rBA g1 a15 t16   16  15   15
## rBA g1 a16 t17   17  16   16
## rBA g1 a17 t18   18  17   17
RMark::model.average(model.set, param="rBa")
## Warning in get.real(model, parameter, design = model$design.matrix, se = TRUE, : 
## Improper V-C matrix for beta estimates. Some variances non-positive.

## Warning in get.real(model, parameter, design = model$design.matrix, se = TRUE, : 
## Improper V-C matrix for beta estimates. Some variances non-positive.
##                par.index   estimate          se fixed    note group age
## rBa g1 a0 t1          76 0.05346544 0.006107959                   1   0
## rBa g1 a1 t2          77 0.05346544 0.006107959                   1   1
## rBa g1 a2 t3          78 0.05346544 0.006107959                   1   2
## rBa g1 a3 t4          79 0.05346544 0.006107959                   1   3
## rBa g1 a4 t5          80 0.05346544 0.006107959                   1   4
## rBa g1 a5 t6          81 0.05346544 0.006107959                   1   5
## rBa g1 a6 t7          82 0.05346544 0.006107959                   1   6
## rBa g1 a7 t8          83 0.05346544 0.006107959                   1   7
## rBa g1 a8 t9          84 0.05346544 0.006107959                   1   8
## rBa g1 a9 t10         85 0.05346544 0.006107959                   1   9
## rBa g1 a10 t11        86 0.05346544 0.006107959                   1  10
## rBa g1 a11 t12        87 0.05346544 0.006107959                   1  11
## rBa g1 a12 t13        88 0.05346544 0.006107959                   1  12
## rBa g1 a13 t14        89 0.05346544 0.006107959                   1  13
## rBa g1 a14 t15        90 0.05346544 0.006107959                   1  14
## rBa g1 a15 t16        91 0.05346544 0.006107959                   1  15
## rBa g1 a16 t17        92 0.05346544 0.006107959                   1  16
## rBa g1 a17 t18        93 0.05346544 0.006107959                   1  17
##                time Age Time
## rBa g1 a0 t1      1   0    0
## rBa g1 a1 t2      2   1    1
## rBa g1 a2 t3      3   2    2
## rBa g1 a3 t4      4   3    3
## rBa g1 a4 t5      5   4    4
## rBa g1 a5 t6      6   5    5
## rBa g1 a6 t7      7   6    6
## rBa g1 a7 t8      8   7    7
## rBa g1 a8 t9      9   8    8
## rBa g1 a9 t10    10   9    9
## rBa g1 a10 t11   11  10   10
## rBa g1 a11 t12   12  11   11
## rBa g1 a12 t13   13  12   12
## rBa g1 a13 t14   14  13   13
## rBa g1 a14 t15   15  14   14
## rBa g1 a15 t16   16  15   15
## rBa g1 a16 t17   17  16   16
## rBa g1 a17 t18   18  17   17
# Compute the observed occupance of each species
obs.occ <- data.frame(elev = site.covar$elev,
                      oogb = pmin(1, apply(gb.data,1,max, na.rm=TRUE)),
                      oobb = pmin(1, apply(bb.data,1,max, na.rm=TRUE)))
head(obs.occ)
##   elev oogb oobb
## 1 1994    1    0
## 2 1760    0    0
## 3 1722    0    0
## 4 1695    1    0
## 5 1825    0    0
## 6 1825    0    0
ggplot(data=obs.occ, aes(x=elev, y=oobb))+
  ggtitle("Observed occupancy of bb given gb")+
  geom_point()+
  geom_smooth(method="glm", method.args = list(family = quasibinomial(link = 'logit')))+
  facet_wrap(~oogb, ncol=1)

# and look at when the species are reversed
ggplot(data=obs.occ, aes(x=elev, y=oogb))+
  ggtitle("Observed occupancy of gb given bb")+
  geom_point()+
  geom_smooth(method="glm", method.args = list(family = quasibinomial(link = 'logit')))+
  facet_wrap(~oobb, ncol=1)

# cleanup
cleanup(ask=FALSE)