# Multi species single season with a list of models

# Using RPresence

# Co-occurence of spotted (SO) and barred owls (BO)

# 2020-06-24 CJS real$rho and real$nu now in derived$
# 2018-12-13 code contributed by Neil Faught
library(car)
## Loading required package: carData
library(ggplot2)
library(readxl)
library(reshape2)
library(RPresence)

# get the data
SO.data <- readxl::read_excel(file.path("..","SpottedAndBarredOwls.xls"),
                              sheet="RawData", na='-',
                              col_names=FALSE,
                              range = "B11:K161")
## New names:
## * `` -> ...1
## * `` -> ...2
## * `` -> ...3
## * `` -> ...4
## * `` -> ...5
## * ...
BO.data <- readxl::read_excel(file.path("..","SpottedAndBarredOwls.xls"),
                              sheet="RawData", na='-',
                              col_names=FALSE,
                              range = "M11:V161")
## New names:
## * `` -> ...1
## * `` -> ...2
## * `` -> ...3
## * `` -> ...4
## * `` -> ...5
## * ...
# Convert history to compressed format
# 0=neither species detected,
# 1=only species A detected,
# 2=only species B detected,
# 3=both species detected

input.data <- 2*BO.data + SO.data
input.data
##     ...1 ...2 ...3 ...4 ...5 ...6 ...7 ...8 ...9 ...10
## 1      0    1    1    1   NA   NA   NA   NA   NA    NA
## 2      1    1    1    1   NA   NA   NA   NA   NA    NA
## 3      0    3    2    0   NA   NA   NA   NA   NA    NA
## 4      1    1    1    1   NA   NA   NA   NA   NA    NA
## 5      0    0    0    1   NA   NA   NA   NA   NA    NA
## 6      0    1    1   NA   NA   NA   NA   NA   NA    NA
## 7      1    1    1   NA   NA   NA   NA   NA   NA    NA
## 8      0    0    0    0   NA   NA   NA   NA   NA    NA
## 9      0    2    2    2   NA   NA   NA   NA   NA    NA
## 10     1    1    1   NA   NA   NA   NA   NA   NA    NA
## 11     1    1    1   NA   NA   NA   NA   NA   NA    NA
## 12     1    1    1    1    1    0    1   NA   NA    NA
## 13     0    0    0    0   NA   NA   NA   NA   NA    NA
## 14     1    1    1    1    1   NA   NA   NA   NA    NA
## 15     1    0    0    0    0    0    0    1    1    NA
## 16     1    1    1    0    1    1   NA   NA   NA    NA
## 17     1    0    0    0   NA   NA   NA   NA   NA    NA
## 18     0    0    0    0   NA   NA   NA   NA   NA    NA
## 19     1    1    1    1    1    1    1    1    1     1
## 20     0    0    0    0   NA   NA   NA   NA   NA    NA
## 21     1    1    1   NA   NA   NA   NA   NA   NA    NA
## 22     1    1   NA   NA   NA   NA   NA   NA   NA    NA
## 23     1    0    0    1    0    0    1    0    1    NA
## 24     0    0    0    0   NA   NA   NA   NA   NA    NA
## 25     0    0    0    0   NA   NA   NA   NA   NA    NA
## 26     0    1    1    1   NA   NA   NA   NA   NA    NA
## 27     0    0    0    0   NA   NA   NA   NA   NA    NA
## 28     3    1    0    0    0    0   NA   NA   NA    NA
## 29     0    0    0    0   NA   NA   NA   NA   NA    NA
## 30     0    1    0    1    1   NA   NA   NA   NA    NA
## 31     0    0    0    0   NA   NA   NA   NA   NA    NA
## 32     0    0    1    1    1   NA   NA   NA   NA    NA
## 33     0    0    1    1    0    1    1    0    0    NA
## 34     0    0    0    0   NA   NA   NA   NA   NA    NA
## 35     1    0    0    0    1    1    1   NA   NA    NA
## 36     1    1    0    1    1   NA   NA   NA   NA    NA
## 37     0    1    0    0    1   NA   NA   NA   NA    NA
## 38     1    1    1   NA   NA   NA   NA   NA   NA    NA
## 39     1    1    1    0    1    1   NA   NA   NA    NA
## 40     0    1    0    1    1    1   NA   NA   NA    NA
## 41     0    0    0    0   NA   NA   NA   NA   NA    NA
## 42     0    0    1    0    0   NA   NA   NA   NA    NA
## 43     0    1    1    1    1    1    1    1    1     1
## 44     1    1    0    1    1   NA   NA   NA   NA    NA
## 45     2    0    0    1    0   NA   NA   NA   NA    NA
## 46     0    0    2    0    2   NA   NA   NA   NA    NA
## 47     1    1    1    1   NA   NA   NA   NA   NA    NA
## 48     0    1    1    1   NA   NA   NA   NA   NA    NA
## 49     1    1    3   NA   NA   NA   NA   NA   NA    NA
## 50     1    0    0    0    2    0    0    0   NA    NA
## 51     0    0    3   NA   NA   NA   NA   NA   NA    NA
## 52     1    1    0    2    1   NA   NA   NA   NA    NA
## 53     1    1    1    1    1    1   NA   NA   NA    NA
## 54     0    0    3    2    0    2    1    0    1     0
## 55     0    1    1    1    1    1   NA   NA   NA    NA
## 56     1    0    2    0   NA   NA   NA   NA   NA    NA
## 57     0    0    0    0   NA   NA   NA   NA   NA    NA
## 58     1    1    1    0    0    1    1   NA   NA    NA
## 59     0    0    0    0   NA   NA   NA   NA   NA    NA
## 60     1    0    1    1    0    0   NA   NA   NA    NA
## 61     0    1    0    2   NA   NA   NA   NA   NA    NA
## 62     0    1    1    1   NA   NA   NA   NA   NA    NA
## 63     0    1    1    0    0   NA   NA   NA   NA    NA
## 64     2    0    0    0   NA   NA   NA   NA   NA    NA
## 65     2    1    1    2    2   NA   NA   NA   NA    NA
## 66     0    1    1   NA   NA   NA   NA   NA   NA    NA
## 67     2    2    2    2    0   NA   NA   NA   NA    NA
## 68     2    0    0    2   NA   NA   NA   NA   NA    NA
## 69     0    0    0    0   NA   NA   NA   NA   NA    NA
## 70     1    1    1    1    1    1    1    1   NA    NA
## 71     0    0    0    0   NA   NA   NA   NA   NA    NA
## 72     1    0    1    1    1    1    0    1    0     1
## 73     0    2    2    2    0   NA   NA   NA   NA    NA
## 74     1    1    0    0    2    1    0    0    3     2
## 75     0    1    0    0    1   NA   NA   NA   NA    NA
## 76     2    2    2    2   NA   NA   NA   NA   NA    NA
## 77     0    0    0    0   NA   NA   NA   NA   NA    NA
## 78     1    0    0    0    0    0   NA   NA   NA    NA
## 79     0    0    0    0   NA   NA   NA   NA   NA    NA
## 80     0    0    0    0   NA   NA   NA   NA   NA    NA
## 81     2    0    0    0   NA   NA   NA   NA   NA    NA
## 82     0    0    0    0   NA   NA   NA   NA   NA    NA
## 83     0    2    0    0   NA   NA   NA   NA   NA    NA
## 84     0    0    2    2   NA   NA   NA   NA   NA    NA
## 85     1    1    0    1    1    1    1   NA   NA    NA
## 86     1    0    0    0   NA   NA   NA   NA   NA    NA
## 87     0    0    0    1   NA   NA   NA   NA   NA    NA
## 88     1    1    1    1    1   NA   NA   NA   NA    NA
## 89     0    2   NA   NA   NA   NA   NA   NA   NA    NA
## 90     0    0    1    0   NA   NA   NA   NA   NA    NA
## 91     0    2    0    0   NA   NA   NA   NA   NA    NA
## 92     1    0    1    1    1    1   NA   NA   NA    NA
## 93     1    1    1    1   NA   NA   NA   NA   NA    NA
## 94     0    0    0    0    1    1    1   NA   NA    NA
## 95     1    0    0    0    1    1    1    1   NA    NA
## 96     0    1    0    0   NA   NA   NA   NA   NA    NA
## 97     0    0    0    1    1   NA   NA   NA   NA    NA
## 98     1    1    1   NA   NA   NA   NA   NA   NA    NA
## 99     2    0    0    0   NA   NA   NA   NA   NA    NA
## 100    2    1    1    1    1   NA   NA   NA   NA    NA
## 101    0    3    0    0   NA   NA   NA   NA   NA    NA
## 102    0    0    1    1    0   NA   NA   NA   NA    NA
## 103    0    1    1   NA   NA   NA   NA   NA   NA    NA
## 104    1    1    1    1   NA   NA   NA   NA   NA    NA
## 105    1    0    1    2    0    0   NA   NA   NA    NA
## 106    1    0    0    1    0    1    0    0    1     1
## 107    1    1    1   NA   NA   NA   NA   NA   NA    NA
## 108    1    0    0    0    1    0    1   NA   NA    NA
## 109    0    2    0    0   NA   NA   NA   NA   NA    NA
## 110    0    1    0    1    1   NA   NA   NA   NA    NA
## 111    0    0    0    0   NA   NA   NA   NA   NA    NA
## 112    0    0    1    1    1    1    1    1   NA    NA
## 113    2    0    0    0   NA   NA   NA   NA   NA    NA
## 114    0    0    1    1    0    0    0   NA   NA    NA
## 115    0    2    3    2   NA   NA   NA   NA   NA    NA
## 116    0    0    0    2   NA   NA   NA   NA   NA    NA
## 117    0    1    1    1   NA   NA   NA   NA   NA    NA
## 118    0    1    1    3    1    0    0   NA   NA    NA
## 119    3    1    1    1    1    1   NA   NA   NA    NA
## 120    1    1    0    0    1   NA   NA   NA   NA    NA
## 121    0    1    1    0    0   NA   NA   NA   NA    NA
## 122    0    0    0    0   NA   NA   NA   NA   NA    NA
## 123    0    1    0    0   NA   NA   NA   NA   NA    NA
## 124    0    0    0    0   NA   NA   NA   NA   NA    NA
## 125    0    0    0    0   NA   NA   NA   NA   NA    NA
## 126    1    1    1    1    0    0    1   NA   NA    NA
## 127    1    0    1    1    1   NA   NA   NA   NA    NA
## 128    0    0    0    1    1   NA   NA   NA   NA    NA
## 129    1    1    1   NA   NA   NA   NA   NA   NA    NA
## 130    0    0    0    2   NA   NA   NA   NA   NA    NA
## 131    1    0    2    3    1   NA   NA   NA   NA    NA
## 132    0    0    0    0   NA   NA   NA   NA   NA    NA
## 133    1    0    0    0    0    0    1    1    0    NA
## 134    1    1    1    1    1    1   NA   NA   NA    NA
## 135    0    2    0    0   NA   NA   NA   NA   NA    NA
## 136    0    0    0    0    0   NA   NA   NA   NA    NA
## 137    0    2    2    0   NA   NA   NA   NA   NA    NA
## 138    0    0    0    0   NA   NA   NA   NA   NA    NA
## 139    1    0    1    1   NA   NA   NA   NA   NA    NA
## 140    0    0    0    1   NA   NA   NA   NA   NA    NA
## 141    0    0    0    0   NA   NA   NA   NA   NA    NA
## 142    0    2    0    0   NA   NA   NA   NA   NA    NA
## 143    1    1   NA   NA   NA   NA   NA   NA   NA    NA
## 144    1    0    1    1    1    0    3   NA   NA    NA
## 145    0    1    0    1    0   NA   NA   NA   NA    NA
## 146    0    0    0    0    0   NA   NA   NA   NA    NA
## 147    0    0    0    0   NA   NA   NA   NA   NA    NA
## 148    0    0    0    0   NA   NA   NA   NA   NA    NA
## 149    0    1    1    1    1    1    1   NA   NA    NA
## 150    0   NA   NA   NA   NA   NA   NA   NA   NA    NA
## 151    0    1    1    0    1    1   NA   NA   NA    NA
input.history = input.data

# Read in survey level covariates
night = readxl::read_excel(file.path("..","SpottedAndBarredOwls.xls"),
                           sheet="Nite Covariate", na='-',
                           col_names=FALSE,
                           range = "B11:K161")
## New names:
## * `` -> ...1
## * `` -> ...2
## * `` -> ...3
## * `` -> ...4
## * `` -> ...5
## * ...
head(night)
## # A tibble: 6 x 10
##    ...1  ...2  ...3  ...4  ...5  ...6  ...7  ...8  ...9 ...10
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1     0     0     0     0    NA    NA    NA    NA    NA    NA
## 2     0     0     1     0    NA    NA    NA    NA    NA    NA
## 3     0     0     0     0    NA    NA    NA    NA    NA    NA
## 4     0     0     1     1    NA    NA    NA    NA    NA    NA
## 5     0     0     0     0    NA    NA    NA    NA    NA    NA
## 6     0     0     0    NA    NA    NA    NA    NA    NA    NA
# Convert to a survey covariate. You need to stack the data by columns
survey.cov <- data.frame(Site=1:nrow(night),
                         visit=as.factor(rep(1:ncol(night), each=nrow(night))),
                         night =unlist(night), stringsAsFactors=FALSE)

head(survey.cov)
##       Site visit night
## ...11    1     1     0
## ...12    2     1     0
## ...13    3     1     0
## ...14    4     1     0
## ...15    5     1     0
## ...16    6     1     0
# create the pao file

owl.pao <- createPao(input.history,
                            survcov = survey.cov,
                            title="Owl multi species - co-occurance")
summary(owl.pao)
## paoname=pres.pao
## title=Owl multi species - co-occurance
## Naive occ=0.794702
## naiveR   =0.218543
##        nunits      nsurveys      nseasons nsurveyseason      nmethods 
##         "151"          "10"           "1"          "10"           "1" 
##      nunitcov      nsurvcov 
##           "1"           "4" 
## unit covariates  : TEMP 
## survey covariates: Site visit night SURVEY
# Use the psiAB parameterization 
#    Parameters of the model are 
#        psiA  - occupancy probability of species A
#        psiBA - occupancy probability of species B if species A is present
#        psiBa - occupancy probability of species B if species A is absent
#
#    If species are independent thatn psiBA = psiBa.
#       Alternatively, nu = odds(B|A)/odds(B|a) = 1.
#
#    Detection parameters
#        pA    - probability of detection if A is alone in the site
#        pB    - probability of detection if B is alone in the site
#        rA    - probability of detecting A only given both on the site
#        rBA   - probability of detecting B given that A was detected and both are on the site
#        rBa   - probability of detecting B given that A not detected and both are on the site 
#    Ifspecies do not interact, then
#        rBA = rBa
#    and
#        rho = odds(rBA)/odds(rBa) = 1


#
# The following special variables are available for modelling  PSI
#    SP species effect 
#    INT interaction of effect on presence of species B when species A was, or was not present 
#
# Model for PSI.... impact on parameters
#    psi~1      psiA=psiBA=psiBa       (1 parameter)
#    psi~SP     psiA    psiBA=psiBa    (2 parameters)
#    psi~SP+INT psiA    psiBA   psiBa  (3 parameters)
#
# The following special variables are available for p
#   SP species effect
#   INT_o is a detection-level interaction where the OCCUPANCY of one species 
#         changes the detection probability of the other species 
#   INT_d is a detection-level interaction where DETECTION of one species changes the 
#         detection probability of the other species in the same survey. 
#
# Model for p.... impact on parameters
#    p~1                          pA = pB = rA = rBA = rBa   (1 parameter)
#    p~SP                         pA=rA,  pB=rBA=rBa         (2 parameters)
#    p~SP+INT_o                   pA=rA,  pB, rBA=rBa        (3 parameters)
#    p~SP+INT_o+SP:INT_o          pA, rA, pB, rBA=rBa        (4 parameters) 
#    p~SP+INT_o+SP:INT_o+INT_d    pA, rA, pB, rBA, rBa       (5 parameters) 




# define the list of models to fit
# Notice the commas between the column and the placement of the quotes
model.list.csv <- textConnection("
p,                               psi
~SP+INT_o+SP:INT_o + INT_d,              ~SP+INT
~SP+INT_o+SP:INT_o,                      ~SP+INT
~SP+INT_o+SP:INT_o+ INT_d,               ~SP
~SP+INT_o+SP:INT_o,                      ~SP
~SP+INT_o + SP:INT_o + SP:INT_o + night, ~SP+INT")

model.list <- read.csv(model.list.csv, header=TRUE, as.is=TRUE, strip.white=TRUE)
model.list
##                                         p     psi
## 1              ~SP+INT_o+SP:INT_o + INT_d ~SP+INT
## 2                      ~SP+INT_o+SP:INT_o ~SP+INT
## 3               ~SP+INT_o+SP:INT_o+ INT_d     ~SP
## 4                      ~SP+INT_o+SP:INT_o     ~SP
## 5 ~SP+INT_o + SP:INT_o + SP:INT_o + night ~SP+INT
# fit the models
model.fits <- plyr::alply(model.list, 1, function(x,detect.pao){
  cat("\n\n***** Starting ", unlist(x), "\n")
  fit <- RPresence::occMod(model=list(as.formula(paste("psi",x$psi)),
                                      as.formula(paste("p"  ,x$p  ))),
                           data=detect.pao,type="so.2sp.1", randint=10)
  fit
},detect.pao=owl.pao)
## 
## 
## ***** Starting  ~SP+INT_o+SP:INT_o + INT_d ~SP+INT 
## 
## 
## ***** Starting  ~SP+INT_o+SP:INT_o ~SP+INT 
## 
## 
## ***** Starting  ~SP+INT_o+SP:INT_o+ INT_d ~SP 
## 
## 
## ***** Starting  ~SP+INT_o+SP:INT_o ~SP 
## 
## 
## ***** Starting  ~SP+INT_o + SP:INT_o + SP:INT_o + night ~SP+INT
# Look the output from a specific model
check.model <- 5

names(model.fits[[check.model]])
##  [1] "modname"     "model"       "dmat"        "data"        "outfile"    
##  [6] "neg2loglike" "npar"        "aic"         "beta"        "real"       
## [11] "derived"     "warnings"
model.fits[[check.model]]$beta
## $psi
##                est       se
## A1_psiA   0.948291 0.227282
## A2_psiBA -1.693274 0.349993
## A3_psiBa  0.590229 0.603968
## 
## $psi.VC
##           A1        A2        A3
## A1  0.051657 -0.031756 -0.033266
## A2 -0.031756  0.122495 -0.099582
## A3 -0.033266 -0.099582  0.364778
## 
## $p
##                         est       se
## B1_pA[1]           0.399719 0.156349
## B2_pB[1]          -0.932362 0.368743
## B3_rA[1]          -1.030705 0.301301
## B4_pA[1].night_pA  2.502748 0.447166
## B5_rBA[1]          0.013165 0.461707
## 
## $p.VC
##           B1        B2        B3        B4        B5
## B1  0.024445 -0.019773 -0.031302 -0.018429  0.010380
## B2 -0.019773  0.135971  0.008861  0.013772 -0.115840
## B3 -0.031302  0.008861  0.090782  0.017022 -0.043933
## B4 -0.018429  0.013772  0.017022  0.199957 -0.002903
## B5  0.010380 -0.115840 -0.043933 -0.002903  0.213173
## 
## $VC
##           A1        A2        A3        B1        B2        B3        B4
## A1  0.051657 -0.031756 -0.033266  0.001515  0.013239 -0.020699  0.000283
## A2 -0.031756  0.122495 -0.099582  0.020882 -0.014485 -0.026489 -0.019685
## A3 -0.033266 -0.099582  0.364778 -0.029796 -0.070343  0.074887  0.025999
## B1  0.001515  0.020882 -0.029796  0.024445 -0.019773 -0.031302 -0.018429
## B2  0.013239 -0.014485 -0.070343 -0.019773  0.135971  0.008861  0.013772
## B3 -0.020699 -0.026489  0.074887 -0.031302  0.008861  0.090782  0.017022
## B4  0.000283 -0.019685  0.025999 -0.018429  0.013772  0.017022  0.199957
## B5 -0.001005 -0.018514  0.066979  0.010380 -0.115840 -0.043933 -0.002903
##           B5
## A1 -0.001005
## A2 -0.018514
## A3  0.066979
## B1  0.010380
## B2 -0.115840
## B3 -0.043933
## B4 -0.002903
## B5  0.213173
model.fits[[check.model]]$dmat
## $psi
##       a1  a2  a3 
## psiA  "1" "0" "0"
## psiBA "1" "1" "0"
## psiBa "1" "1" "1"
## 
## $p
##         b1  b2  b3  b4          b5 
## pA[1]   "1" "0" "0" "night_pA"  "0"
## pA[2]   "1" "0" "0" "night_pA"  "0"
## pA[3]   "1" "0" "0" "night_pA"  "0"
## pA[4]   "1" "0" "0" "night_pA"  "0"
## pA[5]   "1" "0" "0" "night_pA"  "0"
## pA[6]   "1" "0" "0" "night_pA"  "0"
## pA[7]   "1" "0" "0" "night_pA"  "0"
## pA[8]   "1" "0" "0" "night_pA"  "0"
## pA[9]   "1" "0" "0" "night_pA"  "0"
## pA[10]  "1" "0" "0" "night_pA"  "0"
## pB[1]   "1" "1" "0" "night_pB"  "0"
## pB[2]   "1" "1" "0" "night_pB"  "0"
## pB[3]   "1" "1" "0" "night_pB"  "0"
## pB[4]   "1" "1" "0" "night_pB"  "0"
## pB[5]   "1" "1" "0" "night_pB"  "0"
## pB[6]   "1" "1" "0" "night_pB"  "0"
## pB[7]   "1" "1" "0" "night_pB"  "0"
## pB[8]   "1" "1" "0" "night_pB"  "0"
## pB[9]   "1" "1" "0" "night_pB"  "0"
## pB[10]  "1" "1" "0" "night_pB"  "0"
## rA[1]   "1" "0" "1" "night_rA"  "0"
## rA[2]   "1" "0" "1" "night_rA"  "0"
## rA[3]   "1" "0" "1" "night_rA"  "0"
## rA[4]   "1" "0" "1" "night_rA"  "0"
## rA[5]   "1" "0" "1" "night_rA"  "0"
## rA[6]   "1" "0" "1" "night_rA"  "0"
## rA[7]   "1" "0" "1" "night_rA"  "0"
## rA[8]   "1" "0" "1" "night_rA"  "0"
## rA[9]   "1" "0" "1" "night_rA"  "0"
## rA[10]  "1" "0" "1" "night_rA"  "0"
## rBA[1]  "1" "1" "1" "night_rBA" "1"
## rBA[2]  "1" "1" "1" "night_rBA" "1"
## rBA[3]  "1" "1" "1" "night_rBA" "1"
## rBA[4]  "1" "1" "1" "night_rBA" "1"
## rBA[5]  "1" "1" "1" "night_rBA" "1"
## rBA[6]  "1" "1" "1" "night_rBA" "1"
## rBA[7]  "1" "1" "1" "night_rBA" "1"
## rBA[8]  "1" "1" "1" "night_rBA" "1"
## rBA[9]  "1" "1" "1" "night_rBA" "1"
## rBA[10] "1" "1" "1" "night_rBA" "1"
## rBa[1]  "1" "1" "1" "night_rBa" "1"
## rBa[2]  "1" "1" "1" "night_rBa" "1"
## rBa[3]  "1" "1" "1" "night_rBa" "1"
## rBa[4]  "1" "1" "1" "night_rBa" "1"
## rBa[5]  "1" "1" "1" "night_rBa" "1"
## rBa[6]  "1" "1" "1" "night_rBa" "1"
## rBa[7]  "1" "1" "1" "night_rBa" "1"
## rBa[8]  "1" "1" "1" "night_rBa" "1"
## rBa[9]  "1" "1" "1" "night_rBa" "1"
## rBa[10] "1" "1" "1" "night_rBa" "1"
names(model.fits[[check.model]]$real)
## [1] "psiA"  "psiBA" "psiBa" "pA"    "pB"    "rA"    "rBA"   "rBa"
model.fits[[check.model]]$real$psiA[1:5,]
##          est     se  lower  upper
## unit1 0.7208 0.0457 0.6231 0.8012
## unit2 0.7208 0.0457 0.6231 0.8012
## unit3 0.7208 0.0457 0.6231 0.8012
## unit4 0.7208 0.0457 0.6231 0.8012
## unit5 0.7208 0.0457 0.6231 0.8012
model.fits[[check.model]]$real$psiBA[1:5,]
##          est     se  lower  upper
## unit1 0.3219 0.0726 0.1983 0.4768
## unit2 0.3219 0.0726 0.1983 0.4768
## unit3 0.3219 0.0726 0.1983 0.4768
## unit4 0.3219 0.0726 0.1983 0.4768
## unit5 0.3219 0.0726 0.1983 0.4768
model.fits[[check.model]]$real$psiBa[1:5,]
##          est     se  lower  upper
## unit1 0.4614 0.1138 0.2588 0.6776
## unit2 0.4614 0.1138 0.2588 0.6776
## unit3 0.4614 0.1138 0.2588 0.6776
## unit4 0.4614 0.1138 0.2588 0.6776
## unit5 0.4614 0.1138 0.2588 0.6776
model.fits[[check.model]]$derived$nu[1:5,]
##             est        se     lower    upper
## unit1 0.5542004 0.3347196 0.1696518 1.810403
## unit2 0.5542004 0.3347196 0.1696518 1.810403
## unit3 0.5542004 0.3347196 0.1696518 1.810403
## unit4 0.5542004 0.3347196 0.1696518 1.810403
## unit5 0.5542004 0.3347196 0.1696518 1.810403
model.fits[[check.model]]$real$pA[1:5,]
##              est     se  lower  upper
## unit1_1-1 0.5986 0.0376 0.5233 0.6696
## unit2_1-1 0.5986 0.0376 0.5233 0.6696
## unit3_1-1 0.5986 0.0376 0.5233 0.6696
## unit4_1-1 0.5986 0.0376 0.5233 0.6696
## unit5_1-1 0.5986 0.0376 0.5233 0.6696
model.fits[[check.model]]$real$pB[1:5,]
##              est    se lower  upper
## unit1_1-1 0.3699 0.081 0.229 0.5371
## unit2_1-1 0.3699 0.081 0.229 0.5371
## unit3_1-1 0.3699 0.081 0.229 0.5371
## unit4_1-1 0.3699 0.081 0.229 0.5371
## unit5_1-1 0.3699 0.081 0.229 0.5371
model.fits[[check.model]]$real$rA[1:5,]
##              est    se  lower  upper
## unit1_1-1 0.3473 0.052 0.2534 0.4548
## unit2_1-1 0.3473 0.052 0.2534 0.4548
## unit3_1-1 0.3473 0.052 0.2534 0.4548
## unit4_1-1 0.3473 0.052 0.2534 0.4548
## unit5_1-1 0.3473 0.052 0.2534 0.4548
model.fits[[check.model]]$real$rBA[1:5,]
##              est     se  lower  upper
## unit1_1-1 0.1751 0.0411 0.1083 0.2706
## unit2_1-1 0.1751 0.0411 0.1083 0.2706
## unit3_1-1 0.1751 0.0411 0.1083 0.2706
## unit4_1-1 0.1751 0.0411 0.1083 0.2706
## unit5_1-1 0.1751 0.0411 0.1083 0.2706
model.fits[[check.model]]$real$rBa[1:5,]
##              est     se  lower  upper
## unit1_1-1 0.1751 0.0411 0.1083 0.2706
## unit2_1-1 0.1751 0.0411 0.1083 0.2706
## unit3_1-1 0.1751 0.0411 0.1083 0.2706
## unit4_1-1 0.1751 0.0411 0.1083 0.2706
## unit5_1-1 0.1751 0.0411 0.1083 0.2706
model.fits[[check.model]]$derived$rho[1:5,]
##           est se lower upper
## unit1_1-1   1  0     1     1
## unit2_1-1   1  0     1     1
## unit3_1-1   1  0     1     1
## unit4_1-1   1  0     1     1
## unit5_1-1   1  0     1     1
names(model.fits[[check.model]]$derived)
## [1] "nu"  "rho"
# Model averaging
aic.table <- RPresence::createAicTable(model.fits)
aic.table$table
##                                                          Model      AIC
## 5 psi(SP P INT)p(SP P INT_o P SP T INT_o P SP T INT_o P night) 1228.112
## 4                            psi(SP)p(SP P INT_o P SP T INT_o) 1270.952
## 2                      psi(SP P INT)p(SP P INT_o P SP T INT_o) 1272.201
## 3                    psi(SP)p(SP P INT_o P SP T INT_o P INT_d) 1272.847
## 1              psi(SP P INT)p(SP P INT_o P SP T INT_o P INT_d) 1273.980
##     neg2ll npar warn.conv warn.VC    DAIC modlike wgt
## 5 1212.112    8         7       0  0.0000       1   1
## 4 1258.952    6         7       0 42.8395       0   0
## 2 1258.201    7         7       0 44.0892       0   0
## 3 1258.847    7         7       0 44.7345       0   0
## 1 1257.980    8         7       0 45.8681       0   0