#Analysis of butterfly data set
#3 seasons, 2 sampling occasions per season
#Interested in occupancy of CLLESSU
#Using RMark

library(car)
library(readxl)
library(RMark)
## This is RMark 2.2.5
##  Documentation available at http://www.phidot.org/software/mark/rmark/RMarkDocumentation.zip
library(ggplot2)
library(reshape)

# Get the RMark additional functions 
source(file.path("..","..","..","AdditionalFunctions","RMark.additional.functions.R"))

#Read in data
bfly<-read.csv("../Butterfly.csv")
#Data is in long format, need to convert to wide format for RMark
#Want one row for each transect
head(bfly)
##   Field Border Transect   Treatment     Date Visit AMLA AMSN BLSW BUCK
## 1   181   181E     1810 diskcontrol 6/3/2008     1    0    0    0    0
## 2   181   181E    18100 diskcontrol 6/3/2008     1    0    0    0    0
## 3   181   181E   181000 diskcontrol 6/3/2008     1    0    1    0    0
## 4   181   181N    181N1 diskcontrol 6/3/2008     1    0    0    0    0
## 5   181   181N    181N2 diskcontrol 6/3/2008     1    1    0    0    0
## 6   181   181N    181N3 diskcontrol 6/3/2008     1    0    0    0    0
##   CHSK CLLESSU CLSK DESK DUSK ETBL ETSW EUSK FISK GISW GPHA GRHA GUFR HAEM
## 1    0       0    0    0    0    0    0    0    0    0    0    0    0    0
## 2    0       0    0    0    0    0    0    0    1    0    0    0    0    0
## 3    0       1    0    0    0    0    0    0    0    0    0    0    0    1
## 4    0       0    0    0    0    0    0    0    0    0    0    0    0    0
## 5    0       0    0    0    0    1    0    0    0    0    0    0    0    0
## 6    0       0    0    0    0    0    0    0    0    0    0    0    0    0
##   HODW LIYE MONA ORSU PECR PISW RBHA RSPP SACH SICH SLOR SOCL SOSK SPSW
## 1    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 2    0    0    1    1    0    0    0    0    0    0    0    0    0    0
## 3    0    0    1    0    1    0    0    0    0    0    0    0    0    0
## 4    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 5    0    0    0    0    0    0    0    0    0    0    0    0    0    0
## 6    0    0    0    0    0    0    0    0    0    0    0    0    0    0
##   SSSK SWSK TESK VAFR VICE
## 1    0    0    0    0    0
## 2    0    0    0    0    0
## 3    0    0    0    0    0
## 4    0    0    0    0    0
## 5    0    0    0    0    0
## 6    0    0    0    0    0
bfly<-subset(bfly,select=c(Field,Border,Transect,Treatment,Date,Visit,CLLESSU))
head(bfly)
##   Field Border Transect   Treatment     Date Visit CLLESSU
## 1   181   181E     1810 diskcontrol 6/3/2008     1       0
## 2   181   181E    18100 diskcontrol 6/3/2008     1       0
## 3   181   181E   181000 diskcontrol 6/3/2008     1       1
## 4   181   181N    181N1 diskcontrol 6/3/2008     1       0
## 5   181   181N    181N2 diskcontrol 6/3/2008     1       0
## 6   181   181N    181N3 diskcontrol 6/3/2008     1       0
bfly$Transect=as.factor(bfly$Transect)

#Convert to wide format
junk<-melt(bfly,id.var=c("Transect","Visit"),measure.var="CLLESSU")
j2=cast(junk,Transect ~ Visit)
head(j2)
##   Transect 1 2 3 4 5 6
## 1     1810 0 0 1 0 0 0
## 2    18100 0 0 0 1 0 0
## 3   181000 1 0 0 2 1 1
## 4    181N1 0 0 0 0 0 0
## 5    181N2 0 0 0 0 1 0
## 6    181N3 0 0 0 0 0 1
#Note how there are counts in these columns, need to convert to simply 0/1 for 
#present/absent
j2$`1`=ifelse(j2$`1`>0,1,0)
j2$`2`=ifelse(j2$`2`>0,1,0)
j2$`3`=ifelse(j2$`3`>0,1,0)
j2$`4`=ifelse(j2$`4`>0,1,0)
j2$`5`=ifelse(j2$`5`>0,1,0)
j2$`6`=ifelse(j2$`6`>0,1,0)
head(j2)
##   Transect 1 2 3 4 5 6
## 1     1810 0 0 1 0 0 0
## 2    18100 0 0 0 1 0 0
## 3   181000 1 0 0 1 1 1
## 4    181N1 0 0 0 0 0 0
## 5    181N2 0 0 0 0 1 0
## 6    181N3 0 0 0 0 0 1
input.history = j2[,2:7]
# do some basic checks on your data 
# e.g. check number of sites; number of visits etc
nrow(input.history)
## [1] 129
ncol(input.history)
## [1] 6
range(input.history, na.rm=TRUE)
## [1] 0 1
sum(is.na(input.history))
## [1] 0
#Format the capture history to be used by RMark
input.history <- data.frame(freq=1,
                            ch=apply(input.history,1,paste, collapse=""), stringsAsFactors=FALSE)
head(input.history)
##   freq     ch
## 1    1 001000
## 2    1 000100
## 3    1 100111
## 4    1 000000
## 5    1 000010
## 6    1 000001
# Change any NA to . in the chapter history
input.history$ch <- gsub("NA",".", input.history$ch, fixed=TRUE)
head(input.history)
##   freq     ch
## 1    1 001000
## 2    1 000100
## 3    1 100111
## 4    1 000000
## 5    1 000010
## 6    1 000001
#Is the treatment a site or survey level covariate (i.e. does each transect only
#have a single treatment applied to it over the course of the 6 sampling occasions?)
jcov = melt(bfly,id.var=c("Transect","Visit"),measure.var="Treatment")
jcov2=cast(jcov,Transect ~ Visit)
head(jcov2)
##   Transect           1           2           3           4           5
## 1     1810 diskcontrol diskcontrol diskcontrol diskcontrol diskcontrol
## 2    18100 diskcontrol diskcontrol diskcontrol diskcontrol diskcontrol
## 3   181000 diskcontrol diskcontrol diskcontrol diskcontrol diskcontrol
## 4    181N1 diskcontrol diskcontrol diskcontrol diskcontrol diskcontrol
## 5    181N2 diskcontrol diskcontrol diskcontrol diskcontrol diskcontrol
## 6    181N3 diskcontrol diskcontrol diskcontrol diskcontrol diskcontrol
##             6
## 1 diskcontrol
## 2 diskcontrol
## 3 diskcontrol
## 4 diskcontrol
## 5 diskcontrol
## 6 diskcontrol
jcov2$test = ifelse(jcov2$`1`==jcov2$`2` & jcov2$`1`==jcov2$`3` &
                   jcov2$`1`==jcov2$`4` & jcov2$`1`==jcov2$`5` &
                   jcov2$`1`==jcov2$`6`,0,1)
head(jcov2)
##   Transect           1           2           3           4           5
## 1     1810 diskcontrol diskcontrol diskcontrol diskcontrol diskcontrol
## 2    18100 diskcontrol diskcontrol diskcontrol diskcontrol diskcontrol
## 3   181000 diskcontrol diskcontrol diskcontrol diskcontrol diskcontrol
## 4    181N1 diskcontrol diskcontrol diskcontrol diskcontrol diskcontrol
## 5    181N2 diskcontrol diskcontrol diskcontrol diskcontrol diskcontrol
## 6    181N3 diskcontrol diskcontrol diskcontrol diskcontrol diskcontrol
##             6 test
## 1 diskcontrol    0
## 2 diskcontrol    0
## 3 diskcontrol    0
## 4 diskcontrol    0
## 5 diskcontrol    0
## 6 diskcontrol    0
#Looks like this is a site level covariate
sum(jcov2$test)
## [1] 0
#Add site covariates to input history
input.history = cbind(input.history,jcov2$`1`)
names(input.history)[3] = "Treatment"
head(input.history)
##        freq     ch   Treatment
## 1810      1 001000 diskcontrol
## 18100     1 000100 diskcontrol
## 181000    1 100111 diskcontrol
## 181N1     1 000000 diskcontrol
## 181N2     1 000010 diskcontrol
## 181N3     1 000001 diskcontrol
#Create the RMark data structure
#2 Seasons, with 3 visits per season
max.visit.per.year <- 2
n.season <- 3

bfly.data <- process.data(data=input.history, 
                           model="RDOccupEG",
                           time.intervals=c( rep( c(rep(0,max.visit.per.year-1),1),n.season-1),
                                             rep(0,max.visit.per.year-1)),
                          group = "Treatment")
summary(bfly.data)
##                  Length Class      Mode     
## data             4      data.frame list     
## model            1      -none-     character
## mixtures         1      -none-     numeric  
## freq             5      data.frame list     
## nocc             1      -none-     numeric  
## nocc.secondary   3      -none-     numeric  
## time.intervals   5      -none-     numeric  
## begin.time       1      -none-     numeric  
## age.unit         1      -none-     numeric  
## initial.ages     5      -none-     numeric  
## group.covariates 1      data.frame list     
## nstrata          1      -none-     numeric  
## strata.labels    0      -none-     NULL     
## counts           0      -none-     NULL     
## reverse          1      -none-     logical  
## areas            0      -none-     NULL     
## events           0      -none-     NULL
# add visit level covariates
# In this case none
bfly.ddl <- make.design.data(bfly.data)
bfly.ddl
## $Psi
##   par.index model.index        group age time Age Time    Treatment
## 1         1           1         burn   0    1   0    0         burn
## 2         2           2  burncontrol   0    1   0    0  burncontrol
## 3         3           3         disk   0    1   0    0         disk
## 4         4           4  diskcontrol   0    1   0    0  diskcontrol
## 5         5           5 fieldcontrol   0    1   0    0 fieldcontrol
## 
## $Epsilon
##    par.index model.index        group age time Age Time    Treatment
## 1          1           6         burn   0    1   0    0         burn
## 2          2           7         burn   1    2   1    1         burn
## 3          3           8  burncontrol   0    1   0    0  burncontrol
## 4          4           9  burncontrol   1    2   1    1  burncontrol
## 5          5          10         disk   0    1   0    0         disk
## 6          6          11         disk   1    2   1    1         disk
## 7          7          12  diskcontrol   0    1   0    0  diskcontrol
## 8          8          13  diskcontrol   1    2   1    1  diskcontrol
## 9          9          14 fieldcontrol   0    1   0    0 fieldcontrol
## 10        10          15 fieldcontrol   1    2   1    1 fieldcontrol
## 
## $Gamma
##    par.index model.index        group age time Age Time    Treatment
## 1          1          16         burn   0    1   0    0         burn
## 2          2          17         burn   1    2   1    1         burn
## 3          3          18  burncontrol   0    1   0    0  burncontrol
## 4          4          19  burncontrol   1    2   1    1  burncontrol
## 5          5          20         disk   0    1   0    0         disk
## 6          6          21         disk   1    2   1    1         disk
## 7          7          22  diskcontrol   0    1   0    0  diskcontrol
## 8          8          23  diskcontrol   1    2   1    1  diskcontrol
## 9          9          24 fieldcontrol   0    1   0    0 fieldcontrol
## 10        10          25 fieldcontrol   1    2   1    1 fieldcontrol
## 
## $p
##    par.index model.index        group time session Time    Treatment
## 1          1          26         burn    1       1    0         burn
## 2          2          27         burn    2       1    1         burn
## 3          3          28         burn    1       2    0         burn
## 4          4          29         burn    2       2    1         burn
## 5          5          30         burn    1       3    0         burn
## 6          6          31         burn    2       3    1         burn
## 7          7          32  burncontrol    1       1    0  burncontrol
## 8          8          33  burncontrol    2       1    1  burncontrol
## 9          9          34  burncontrol    1       2    0  burncontrol
## 10        10          35  burncontrol    2       2    1  burncontrol
## 11        11          36  burncontrol    1       3    0  burncontrol
## 12        12          37  burncontrol    2       3    1  burncontrol
## 13        13          38         disk    1       1    0         disk
## 14        14          39         disk    2       1    1         disk
## 15        15          40         disk    1       2    0         disk
## 16        16          41         disk    2       2    1         disk
## 17        17          42         disk    1       3    0         disk
## 18        18          43         disk    2       3    1         disk
## 19        19          44  diskcontrol    1       1    0  diskcontrol
## 20        20          45  diskcontrol    2       1    1  diskcontrol
## 21        21          46  diskcontrol    1       2    0  diskcontrol
## 22        22          47  diskcontrol    2       2    1  diskcontrol
## 23        23          48  diskcontrol    1       3    0  diskcontrol
## 24        24          49  diskcontrol    2       3    1  diskcontrol
## 25        25          50 fieldcontrol    1       1    0 fieldcontrol
## 26        26          51 fieldcontrol    2       1    1 fieldcontrol
## 27        27          52 fieldcontrol    1       2    0 fieldcontrol
## 28        28          53 fieldcontrol    2       2    1 fieldcontrol
## 29        29          54 fieldcontrol    1       3    0 fieldcontrol
## 30        30          55 fieldcontrol    2       3    1 fieldcontrol
## 
## $pimtypes
## $pimtypes$Psi
## $pimtypes$Psi$pim.type
## [1] "all"
## 
## 
## $pimtypes$Epsilon
## $pimtypes$Epsilon$pim.type
## [1] "all"
## 
## 
## $pimtypes$Gamma
## $pimtypes$Gamma$pim.type
## [1] "all"
## 
## 
## $pimtypes$p
## $pimtypes$p$pim.type
## [1] "all"
#Fit Null Model
mod.fit <-  RMark::mark(bfly.data,
                        ddl = bfly.ddl,
                        model="RDOccupEG",
                        model.parameters=list(
                          Psi   =list(formula=~1),
                          p     =list(formula=~1),
                          Epsilon = list(formula=~1),
                          Gamma = list(formula=~1)
                        )
)
## 
## Output summary for RDOccupEG model
## Name : Psi(~1)Epsilon(~1)Gamma(~1)p(~1) 
## 
## Npar :  4
## -2lnL:  1016.416
## AICc :  1024.521
## 
## Beta
##                       estimate        se        lcl        ucl
## Psi:(Intercept)      1.2167038 0.3441069  0.5422542  1.8911533
## Epsilon:(Intercept) -2.3035658 0.6402834 -3.5585213 -1.0486103
## Gamma:(Intercept)   -0.2540664 0.4468943 -1.1299794  0.6218465
## p:(Intercept)       -0.0117223 0.1318397 -0.2701281  0.2466834
## 
## 
## Real Parameter Psi
## Group:Treatmentburn 
##         1
##  0.771483
## 
## Group:Treatmentburncontrol 
##         1
##  0.771483
## 
## Group:Treatmentdisk 
##         1
##  0.771483
## 
## Group:Treatmentdiskcontrol 
##         1
##  0.771483
## 
## Group:Treatmentfieldcontrol 
##         1
##  0.771483
## 
## 
## Real Parameter Epsilon
## Group:Treatmentburn 
##          1         2
##  0.0908281 0.0908281
## 
## Group:Treatmentburncontrol 
##          1         2
##  0.0908281 0.0908281
## 
## Group:Treatmentdisk 
##          1         2
##  0.0908281 0.0908281
## 
## Group:Treatmentdiskcontrol 
##          1         2
##  0.0908281 0.0908281
## 
## Group:Treatmentfieldcontrol 
##          1         2
##  0.0908281 0.0908281
## 
## 
## Real Parameter Gamma
## Group:Treatmentburn 
##          1         2
##  0.4368229 0.4368229
## 
## Group:Treatmentburncontrol 
##          1         2
##  0.4368229 0.4368229
## 
## Group:Treatmentdisk 
##          1         2
##  0.4368229 0.4368229
## 
## Group:Treatmentdiskcontrol 
##          1         2
##  0.4368229 0.4368229
## 
## Group:Treatmentfieldcontrol 
##          1         2
##  0.4368229 0.4368229
## 
## 
## Real Parameter p
##  Session:1Group:Treatmentburn 
##          1         2
##  0.4970694 0.4970694
## 
##  Session:2Group:Treatmentburn 
##          1         2
##  0.4970694 0.4970694
## 
##  Session:3Group:Treatmentburn 
##          1         2
##  0.4970694 0.4970694
## 
##  Session:1Group:Treatmentburncontrol 
##          1         2
##  0.4970694 0.4970694
## 
##  Session:2Group:Treatmentburncontrol 
##          1         2
##  0.4970694 0.4970694
## 
##  Session:3Group:Treatmentburncontrol 
##          1         2
##  0.4970694 0.4970694
## 
##  Session:1Group:Treatmentdisk 
##          1         2
##  0.4970694 0.4970694
## 
##  Session:2Group:Treatmentdisk 
##          1         2
##  0.4970694 0.4970694
## 
##  Session:3Group:Treatmentdisk 
##          1         2
##  0.4970694 0.4970694
## 
##  Session:1Group:Treatmentdiskcontrol 
##          1         2
##  0.4970694 0.4970694
## 
##  Session:2Group:Treatmentdiskcontrol 
##          1         2
##  0.4970694 0.4970694
## 
##  Session:3Group:Treatmentdiskcontrol 
##          1         2
##  0.4970694 0.4970694
## 
##  Session:1Group:Treatmentfieldcontrol 
##          1         2
##  0.4970694 0.4970694
## 
##  Session:2Group:Treatmentfieldcontrol 
##          1         2
##  0.4970694 0.4970694
## 
##  Session:3Group:Treatmentfieldcontrol 
##          1         2
##  0.4970694 0.4970694
# Estimates of real initial occupancy, detection, local exctinction,
# and local colonization probabilities
mod.fit$results$real
##                      estimate        se       lcl       ucl fixed    note
## Psi gburn a0 t1     0.7714830 0.0606650 0.6323367 0.8688870              
## Epsilon gburn a0 t1 0.0908281 0.0528735 0.0276922 0.2594920              
## Gamma gburn a0 t1   0.4368229 0.1099399 0.2441649 0.6506384              
## p gburn s1 t1       0.4970694 0.0329588 0.4328757 0.5613600
# Estimates of regression coefficients
mod.fit$results$beta
##                       estimate        se        lcl        ucl
## Psi:(Intercept)      1.2167038 0.3441069  0.5422542  1.8911533
## Epsilon:(Intercept) -2.3035658 0.6402834 -3.5585213 -1.0486103
## Gamma:(Intercept)   -0.2540664 0.4468943 -1.1299794  0.6218465
## p:(Intercept)       -0.0117223 0.1318397 -0.2701281  0.2466834
# Estimates of various derived parameters for estimated occpancy in each year,
# estimated ratio of in occupancy from year to year, and estimated log
# of the ratio of odds in occupancy from year to year
mod.fit$results$derived
## $`psi Probability Occupied`
##     estimate         se       lcl       ucl
## 1  0.7714830 0.06066501 0.6525795 0.8903864
## 2  0.8012321 0.04891390 0.7053609 0.8971034
## 3  0.8152841 0.05846486 0.7006930 0.9298752
## 4  0.7714830 0.06066501 0.6525795 0.8903864
## 5  0.8012321 0.04891390 0.7053609 0.8971034
## 6  0.8152841 0.05846486 0.7006930 0.9298752
## 7  0.7714830 0.06066501 0.6525795 0.8903864
## 8  0.8012321 0.04891390 0.7053609 0.8971034
## 9  0.8152841 0.05846486 0.7006930 0.9298752
## 10 0.7714830 0.06066501 0.6525795 0.8903864
## 11 0.8012321 0.04891390 0.7053609 0.8971034
## 12 0.8152841 0.05846486 0.7006930 0.9298752
## 13 0.7714830 0.06066501 0.6525795 0.8903864
## 14 0.8012321 0.04891390 0.7053609 0.8971034
## 15 0.8152841 0.05846486 0.7006930 0.9298752
## 
## $`lambda Rate of Change`
##    estimate         se       lcl      ucl
## 1  1.038561 0.06224831 0.9165543 1.160568
## 2  1.017538 0.02719558 0.9642346 1.070841
## 3  1.038561 0.06224831 0.9165543 1.160568
## 4  1.017538 0.02719558 0.9642346 1.070841
## 5  1.038561 0.06224831 0.9165543 1.160568
## 6  1.017538 0.02719558 0.9642346 1.070841
## 7  1.038561 0.06224831 0.9165543 1.160568
## 8  1.017538 0.02719558 0.9642346 1.070841
## 9  1.038561 0.06224831 0.9165543 1.160568
## 10 1.017538 0.02719558 0.9642346 1.070841
## 
## $`log odds lambda`
##    estimate        se       lcl      ucl
## 1  1.194000 0.3240320 0.5588974 1.829103
## 2  1.094946 0.1658202 0.7699380 1.419953
## 3  1.194000 0.3240320 0.5588974 1.829103
## 4  1.094946 0.1658202 0.7699380 1.419953
## 5  1.194000 0.3240320 0.5588974 1.829103
## 6  1.094946 0.1658202 0.7699380 1.419953
## 7  1.194000 0.3240320 0.5588974 1.829103
## 8  1.094946 0.1658202 0.7699380 1.419953
## 9  1.194000 0.3240320 0.5588974 1.829103
## 10 1.094946 0.1658202 0.7699380 1.419953
trt = c(rep("burn",3),rep("burncontrol",3),rep("disk",3),rep("diskcontrol",3),rep("fieldcontrol",3))
trt2 = c(rep("burn",2),rep("burncontrol",2),rep("disk",2),rep("diskcontrol",2),rep("fieldcontrol",2))

mod.fit$results$derived$"psi Probability Occupied"$Treatment = trt
mod.fit$results$derived$"psi Probability Occupied"
##     estimate         se       lcl       ucl    Treatment
## 1  0.7714830 0.06066501 0.6525795 0.8903864         burn
## 2  0.8012321 0.04891390 0.7053609 0.8971034         burn
## 3  0.8152841 0.05846486 0.7006930 0.9298752         burn
## 4  0.7714830 0.06066501 0.6525795 0.8903864  burncontrol
## 5  0.8012321 0.04891390 0.7053609 0.8971034  burncontrol
## 6  0.8152841 0.05846486 0.7006930 0.9298752  burncontrol
## 7  0.7714830 0.06066501 0.6525795 0.8903864         disk
## 8  0.8012321 0.04891390 0.7053609 0.8971034         disk
## 9  0.8152841 0.05846486 0.7006930 0.9298752         disk
## 10 0.7714830 0.06066501 0.6525795 0.8903864  diskcontrol
## 11 0.8012321 0.04891390 0.7053609 0.8971034  diskcontrol
## 12 0.8152841 0.05846486 0.7006930 0.9298752  diskcontrol
## 13 0.7714830 0.06066501 0.6525795 0.8903864 fieldcontrol
## 14 0.8012321 0.04891390 0.7053609 0.8971034 fieldcontrol
## 15 0.8152841 0.05846486 0.7006930 0.9298752 fieldcontrol
mod.fit$results$derived$"lambda Rate of Change"$Treatment = trt2
mod.fit$results$derived$"lambda Rate of Change"
##    estimate         se       lcl      ucl    Treatment
## 1  1.038561 0.06224831 0.9165543 1.160568         burn
## 2  1.017538 0.02719558 0.9642346 1.070841         burn
## 3  1.038561 0.06224831 0.9165543 1.160568  burncontrol
## 4  1.017538 0.02719558 0.9642346 1.070841  burncontrol
## 5  1.038561 0.06224831 0.9165543 1.160568         disk
## 6  1.017538 0.02719558 0.9642346 1.070841         disk
## 7  1.038561 0.06224831 0.9165543 1.160568  diskcontrol
## 8  1.017538 0.02719558 0.9642346 1.070841  diskcontrol
## 9  1.038561 0.06224831 0.9165543 1.160568 fieldcontrol
## 10 1.017538 0.02719558 0.9642346 1.070841 fieldcontrol
mod.fit$results$derived$"log odds lambda"$Treatment = trt2
mod.fit$results$derived$"log odds lambda"
##    estimate        se       lcl      ucl    Treatment
## 1  1.194000 0.3240320 0.5588974 1.829103         burn
## 2  1.094946 0.1658202 0.7699380 1.419953         burn
## 3  1.194000 0.3240320 0.5588974 1.829103  burncontrol
## 4  1.094946 0.1658202 0.7699380 1.419953  burncontrol
## 5  1.194000 0.3240320 0.5588974 1.829103         disk
## 6  1.094946 0.1658202 0.7699380 1.419953         disk
## 7  1.194000 0.3240320 0.5588974 1.829103  diskcontrol
## 8  1.094946 0.1658202 0.7699380 1.419953  diskcontrol
## 9  1.194000 0.3240320 0.5588974 1.829103 fieldcontrol
## 10 1.094946 0.1658202 0.7699380 1.419953 fieldcontrol
# Plot derived occupancy probabilities
plotdata = mod.fit$results$derived$"psi Probability Occupied"
plotdata$Season = rep(c(1:3),5)
head(plotdata)
##    estimate         se       lcl       ucl   Treatment Season
## 1 0.7714830 0.06066501 0.6525795 0.8903864        burn      1
## 2 0.8012321 0.04891390 0.7053609 0.8971034        burn      2
## 3 0.8152841 0.05846486 0.7006930 0.9298752        burn      3
## 4 0.7714830 0.06066501 0.6525795 0.8903864 burncontrol      1
## 5 0.8012321 0.04891390 0.7053609 0.8971034 burncontrol      2
## 6 0.8152841 0.05846486 0.7006930 0.9298752 burncontrol      3
ggplot(data=plotdata, aes(x=Season,y=estimate))+
  ggtitle("Estimated occupancy over time")+
  geom_point(position=position_dodge(w=0.2))+
  geom_line(position=position_dodge(w=0.2))+
  ylim(0,1)+
  geom_errorbar(aes(ymin=lcl, ymax=ucl), width=.1,position=position_dodge(w=0.2))+
  scale_x_continuous(breaks=1:3)+
  facet_wrap(~Treatment)

cleanup(ask=FALSE)