# Single Species, MultiSeason Occupancy analyais - multi-model averaging

# Grand Skinks


#   Data has been collected on 352 tors over a 5 year (the ‘seasons’) period,^
#   although not all tors (rock piles) were surveyed each year, with up to 3 surveys^
#   of each tor per year.  

#   The 15 columns are in 5 blocks of 3.

#   There is also a site-specific covariate Pasture indicating whether the surrounding^
#   matrix is either predominately the modified habitat (farm pasture, Pasture =1) or
#   "native" grassland (tussock, Pasture = 0).

# 2018-08-18 Code submitted by Carl James Schwarz (cschwarz.stat.sfu.ca@gmail.com)

# Using the RMark package
library(car)
library(readxl)
library(RMark)
## This is RMark 2.2.5
##  Documentation available at http://www.phidot.org/software/mark/rmark/RMarkDocumentation.zip
library(ggplot2)

# Get the RMark additional functions 
source(file.path("..","..","..","AdditionalFunctions","RMark.additional.functions.R"))

# get the data read in
# Data for detections should be a data frame with rows corresponding to sites
# and columns to visits.
# The usual 1=detected; 0=not detected; NA=not visited is used.

input.data <- readxl::read_excel(file.path("..","GrandSkinks.xls"), 
                                    sheet="DetectionHistory",
                                    skip=3, na="-",
                                    col_names=FALSE)
head(input.data)
## # A tibble: 6 x 18
##    X__1  X__2  X__3  X__4  X__5  X__6  X__7  X__8  X__9 X__10 X__11 X__12
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  1.00     0     0     0     0     0     0     0     0    NA     0     0
## 2  2.00     0     0     0     0     0    NA     0     0     0     0     0
## 3  3.00     0     0     0     0     0    NA     0     0     0     0     0
## 4  4.00     0    NA    NA     0    NA    NA     0    NA    NA     0     0
## 5  5.00     0    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA
## 6  6.00     0    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA
## # ... with 6 more variables: X__13 <dbl>, X__14 <dbl>, X__15 <dbl>, X__16
## #   <dbl>, X__17 <lgl>, X__18 <dbl>
input.history <- input.data[, 2:16]
head(input.history)
## # A tibble: 6 x 15
##    X__2  X__3  X__4  X__5  X__6  X__7  X__8  X__9 X__10 X__11 X__12 X__13
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1     0     0     0     0     0     0     0     0    NA     0     0     0
## 2     0     0     0     0     0    NA     0     0     0     0     0     0
## 3     0     0     0     0     0    NA     0     0     0     0     0     0
## 4     0    NA    NA     0    NA    NA     0    NA    NA     0     0    NA
## 5     0    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA
## 6     0    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA
## # ... with 3 more variables: X__14 <dbl>, X__15 <dbl>, X__16 <dbl>
# do some basic checks on your data 
# e.g. check number of sites; number of visits etc
nrow(input.history)
## [1] 352
ncol(input.history)
## [1] 15
range(input.history, na.rm=TRUE)
## [1] 0 1
#Looks like there are some missing values
sum(is.na(input.history))
## [1] 2969
site.covar <- data.frame(Site=1:nrow(input.data),
                         Pasture=car::recode(input.data$X__18,
                                            "1='Modified'; 0='Native';"))
head(site.covar)
##   Site  Pasture
## 1    1 Modified
## 2    2 Modified
## 3    3 Modified
## 4    4 Modified
## 5    5 Modified
## 6    6 Modified
#Format the capture history to be used by RMark
input.history <- data.frame(freq=1,
                            ch=apply(input.history,1,paste, collapse=""), stringsAsFactors=FALSE)
head(input.history)
##   freq                           ch
## 1    1             00000000NA000000
## 2    1             00000NA000000000
## 3    1             00000NA000000000
## 4    1     0NANA0NANA0NANA00NA0NANA
## 5    1 0NANANANANANANANANANANA0NANA
## 6    1 0NANANANANANANANANANANA0NANA
# Change any NA to . in the chapter history
input.history$ch <- gsub("NA",".", input.history$ch, fixed=TRUE)
head(input.history)
##   freq              ch
## 1    1 00000000.000000
## 2    1 00000.000000000
## 3    1 00000.000000000
## 4    1 0..0..0..00.0..
## 5    1 0...........0..
## 6    1 0...........0..
#Add site covariates to input history
input.history = cbind(input.history,site.covar)
head(input.history)
##   freq              ch Site  Pasture
## 1    1 00000000.000000    1 Modified
## 2    1 00000.000000000    2 Modified
## 3    1 00000.000000000    3 Modified
## 4    1 0..0..0..00.0..    4 Modified
## 5    1 0...........0..    5 Modified
## 6    1 0...........0..    6 Modified
#Create the RMark data structure
#Five  Seasons, with 3 visits per season
max.visit.per.year <- 3
n.season <- 5

skink.data <- process.data(data=input.history, 
                          model="RDOccupEG",
                          groups = "Pasture",
                          time.intervals=c( rep( c(rep(0,max.visit.per.year-1),1),n.season-1),
                                            rep(0,max.visit.per.year-1)))
summary(skink.data)
##                  Length Class      Mode     
## data              5     data.frame list     
## model             1     -none-     character
## mixtures          1     -none-     numeric  
## freq              2     data.frame list     
## nocc              1     -none-     numeric  
## nocc.secondary    5     -none-     numeric  
## time.intervals   14     -none-     numeric  
## begin.time        1     -none-     numeric  
## age.unit          1     -none-     numeric  
## initial.ages      2     -none-     numeric  
## group.covariates  1     data.frame list     
## nstrata           1     -none-     numeric  
## strata.labels     0     -none-     NULL     
## counts            0     -none-     NULL     
## reverse           1     -none-     logical  
## areas             0     -none-     NULL     
## events            0     -none-     NULL
# any time specific covariates need to be added to the ddl's in the loop below
# set up the ddls as needed for time-varying covariates.
# you need to do this in the loop because different paraemterizations have different ddl structures


# What are the parameter names for Multi Season Single Species models
setup.parameters("RDOccupEG", check=TRUE)
## [1] "Psi"     "Epsilon" "Gamma"   "p"
#there are other parameterizations available
setup.parameters("RDOccupPE", check=TRUE) # psi, epsilon, p
## [1] "Psi"     "Epsilon" "p"
setup.parameters("RDOccupPG", check=TRUE) # psi, gamma, p
## [1] "Psi"   "Gamma" "p"
# define the list of models to fit
# Notice the commas between the column and the placement of the quotes
# Define the models.
#    model.type can be RDOccupPE, RDOccupPG, RDOccupEG~time
#The random occupancy model cannot be fit here. See the other code in this directory.

model.list.csv <- textConnection("
 p,               Psi,          Gamma,      Epsilon, model.type
~1,              ~1,              ~1,           ~1,       RDOccupEG
~session,           ~1,              ~time,           ~time,       RDOccupEG
~session,           ~Pasture,            ~time,        ~time,      RDOccupEG
~session,           ~Pasture,         ~time*Pasture,           ~time,      RDOccupEG")


model.list <- read.csv(model.list.csv, header=TRUE, as.is=TRUE, strip.white=TRUE)
model.list$model.number <- 1:nrow(model.list)
model.list
##          p      Psi         Gamma Epsilon model.type model.number
## 1       ~1       ~1            ~1      ~1  RDOccupEG            1
## 2 ~session       ~1         ~time   ~time  RDOccupEG            2
## 3 ~session ~Pasture         ~time   ~time  RDOccupEG            3
## 4 ~session ~Pasture ~time*Pasture   ~time  RDOccupEG            4
# fit the models
myobs <- ls()
myobs <- myobs[ grepl("m...",myobs,fixed=TRUE)]
cat("Removing ", myobs, "\n")
## Removing
rm(list=myobs)

model.fits <- plyr::dlply(model.list, "model.number", function(x,input.history){
  cat("\n\n***** Starting ", unlist(x), "\n")
  max.visit.per.year <- 3
  n.season <- 5
  
  # we need to process the data in the loop to allow for different data types
  input.data <- process.data(data=input.history,
                             model=x$model.type,
                             time.intervals=c( rep( c(rep(0,max.visit.per.year-1),1),n.season-1),
                                               rep(0,max.visit.per.year-1)),
                             group = "Pasture")
  # set up the ddls as needed for time-varying covariates.
  # you need to do this in the loop because different paraemterizations have different ddl structures
  input.ddl <- make.design.data(input.data)
  
  model.parameters=list(
    Psi   =list(formula=as.formula(eval(x$Psi))),
    p     =list(formula=as.formula(eval(x$p))),
    Epsilon=list(formula=as.formula(eval(x$Epsilon))),
    Gamma  =list(formula=as.formula(eval(x$Gamma)))
  )
  if(x$model.type == "RDOccupPG"){  # psi, gamma, p formulation
    model.parameters$Epsilon= NULL
  }
  if(x$model.type == "RDOccupPE"){  # psi, epsilon, p formulation
    model.parameters$Gamma = NULL
  }  
  
  fit <- RMark::mark(input.data, ddl=input.ddl,
                     model=x$model.type,
                     model.parameters=model.parameters
                     #,brief=TRUE,output=FALSE, delete=TRUE
                     #,invisible=TRUE,output=TRUE  # set for debugging
  )
  
  mnumber <- paste("m...",formatC(x$model.number, width = 3, format = "d", flag = "0"),sep="")
  assign( mnumber, fit, envir=.GlobalEnv)
  #browser()
  fit
  
},input.history=input.history)
## 
## 
## ***** Starting  ~1 ~1 ~1 ~1 RDOccupEG 1 
## 
## Output summary for RDOccupEG model
## Name : Psi(~1)Epsilon(~1)Gamma(~1)p(~1) 
## 
## Npar :  4
## -2lnL:  1767.015
## AICc :  1775.043
## 
## Beta
##                       estimate        se        lcl        ucl
## Psi:(Intercept)     -0.4284162 0.1318158 -0.6867753 -0.1700572
## Epsilon:(Intercept) -2.1970555 0.2028550 -2.5946513 -1.7994598
## Gamma:(Intercept)   -2.6132999 0.1864896 -2.9788196 -2.2477802
## p:(Intercept)        0.7961677 0.1077368  0.5850035  1.0073319
## 
## 
## Real Parameter Psi
## Group:PastureModified 
##          1
##  0.3945046
## 
## Group:PastureNative 
##          1
##  0.3945046
## 
## 
## Real Parameter Epsilon
## Group:PastureModified 
##          1         2         3         4
##  0.1000152 0.1000152 0.1000152 0.1000152
## 
## Group:PastureNative 
##          1         2         3         4
##  0.1000152 0.1000152 0.1000152 0.1000152
## 
## 
## Real Parameter Gamma
## Group:PastureModified 
##          1         2         3         4
##  0.0682873 0.0682873 0.0682873 0.0682873
## 
## Group:PastureNative 
##          1         2         3         4
##  0.0682873 0.0682873 0.0682873 0.0682873
## 
## 
## Real Parameter p
##  Session:1Group:PastureModified 
##          1         2         3
##  0.6891541 0.6891541 0.6891541
## 
##  Session:2Group:PastureModified 
##          1         2         3
##  0.6891541 0.6891541 0.6891541
## 
##  Session:3Group:PastureModified 
##          1         2         3
##  0.6891541 0.6891541 0.6891541
## 
##  Session:4Group:PastureModified 
##          1         2         3
##  0.6891541 0.6891541 0.6891541
## 
##  Session:5Group:PastureModified 
##          1         2         3
##  0.6891541 0.6891541 0.6891541
## 
##  Session:1Group:PastureNative 
##          1         2         3
##  0.6891541 0.6891541 0.6891541
## 
##  Session:2Group:PastureNative 
##          1         2         3
##  0.6891541 0.6891541 0.6891541
## 
##  Session:3Group:PastureNative 
##          1         2         3
##  0.6891541 0.6891541 0.6891541
## 
##  Session:4Group:PastureNative 
##          1         2         3
##  0.6891541 0.6891541 0.6891541
## 
##  Session:5Group:PastureNative 
##          1         2         3
##  0.6891541 0.6891541 0.6891541
## 
## 
## ***** Starting  ~session ~1 ~time ~time RDOccupEG 2
## 
## Note: only 13 parameters counted of 14 specified parameters
## AICc and parameter count have been adjusted upward
## 
## Output summary for RDOccupEG model
## Name : Psi(~1)Epsilon(~time)Gamma(~time)p(~session) 
## 
## Npar :  14  (unadjusted=13)
## -2lnL:  1746.601
## AICc :  1774.894  (unadjusted=1772.8549)
## 
## Beta
##                       estimate        se        lcl        ucl
## Psi:(Intercept)     -0.4759619 0.1447491 -0.7596701 -0.1922536
## Epsilon:(Intercept) -2.6094002 0.4617956 -3.5145196 -1.7042808
## Epsilon:time2        0.0640641 0.6757473 -1.2604007  1.3885289
## Epsilon:time3        0.7863089 0.5766713 -0.3439668  1.9165847
## Epsilon:time4        1.0252830 0.6207833 -0.1914523  2.2420182
## Gamma:(Intercept)   -1.9164899 0.3300351 -2.5633587 -1.2696211
## Gamma:time2         -9.4583808 0.0000000 -9.4583808 -9.4583808
## Gamma:time3         -0.6370415 0.4996370 -1.6163300  0.3422470
## Gamma:time4         -0.3289008 0.4648862 -1.2400777  0.5822762
## p:(Intercept)        0.8248251 0.2720551  0.2915971  1.3580532
## p:session2          -0.2676570 0.3230589 -0.9008524  0.3655383
## p:session3          -0.0250358 0.3313501 -0.6744821  0.6244104
## p:session4           0.8511617 0.4194278  0.0290832  1.6732403
## p:session5          -0.1425150 0.3797182 -0.8867627  0.6017327
## 
## 
## Real Parameter Psi
## Group:PastureModified 
##          1
##  0.3832061
## 
## Group:PastureNative 
##          1
##  0.3832061
## 
## 
## Real Parameter Epsilon
## Group:PastureModified 
##          1         2         3         4
##  0.0685359 0.0727404 0.1390634 0.1702132
## 
## Group:PastureNative 
##          1         2         3         4
##  0.0685359 0.0727404 0.1390634 0.1702132
## 
## 
## Real Parameter Gamma
## Group:PastureModified 
##          1            2         3         4
##  0.1282535 1.148025e-05 0.0721896 0.0957478
## 
## Group:PastureNative 
##          1            2         3         4
##  0.1282535 1.148025e-05 0.0721896 0.0957478
## 
## 
## Real Parameter p
##  Session:1Group:PastureModified 
##          1         2         3
##  0.6952596 0.6952596 0.6952596
## 
##  Session:2Group:PastureModified 
##         1        2        3
##  0.635797 0.635797 0.635797
## 
##  Session:3Group:PastureModified 
##          1         2         3
##  0.6899294 0.6899294 0.6899294
## 
##  Session:4Group:PastureModified 
##          1         2         3
##  0.8423724 0.8423724 0.8423724
## 
##  Session:5Group:PastureModified 
##          1         2         3
##  0.6642541 0.6642541 0.6642541
## 
##  Session:1Group:PastureNative 
##          1         2         3
##  0.6952596 0.6952596 0.6952596
## 
##  Session:2Group:PastureNative 
##         1        2        3
##  0.635797 0.635797 0.635797
## 
##  Session:3Group:PastureNative 
##          1         2         3
##  0.6899294 0.6899294 0.6899294
## 
##  Session:4Group:PastureNative 
##          1         2         3
##  0.8423724 0.8423724 0.8423724
## 
##  Session:5Group:PastureNative 
##          1         2         3
##  0.6642541 0.6642541 0.6642541
## 
## 
## ***** Starting  ~session ~Pasture ~time ~time RDOccupEG 3 
## 
## Output summary for RDOccupEG model
## Name : Psi(~Pasture)Epsilon(~time)Gamma(~time)p(~session) 
## 
## Npar :  15
## -2lnL:  1721.523
## AICc :  1751.858
## 
## Beta
##                       estimate        se        lcl        ucl
## Psi:(Intercept)     -1.2415714 0.2392899 -1.7105796 -0.7725631
## Psi:PastureNative    1.3614364 0.2890357  0.7949264  1.9279464
## Epsilon:(Intercept) -2.5512963 0.4529245 -3.4390283 -1.6635643
## Epsilon:time2        0.0478822 0.6600699 -1.2458549  1.3416193
## Epsilon:time3        0.7447768 0.5692779 -0.3710080  1.8605616
## Epsilon:time4        0.9678044 0.6139786 -0.2355937  2.1712025
## Gamma:(Intercept)   -2.3394815 0.4974169 -3.3144185 -1.3645444
## Gamma:time2         -1.7282194 1.3249985 -4.3252166  0.8687778
## Gamma:time3         -0.2326664 0.6245554 -1.4567950  0.9914621
## Gamma:time4          0.0997778 0.5940123 -1.0644862  1.2640419
## p:(Intercept)        0.6045438 0.2844120  0.0470964  1.1619913
## p:session2           0.0317154 0.3400432 -0.6347693  0.6982002
## p:session3           0.1796942 0.3390874 -0.4849171  0.8443055
## p:session4           1.0606995 0.4257265  0.2262756  1.8951233
## p:session5           0.0786483 0.3889799 -0.6837524  0.8410490
## 
## 
## Real Parameter Psi
## Group:PastureModified 
##          1
##  0.2241626
## 
## Group:PastureNative 
##          1
##  0.5299304
## 
## 
## Real Parameter Epsilon
## Group:PastureModified 
##          1         2         3         4
##  0.0723394 0.0756192 0.1410593 0.1703015
## 
## Group:PastureNative 
##          1         2         3         4
##  0.0723394 0.0756192 0.1410593 0.1703015
## 
## 
## Real Parameter Gamma
## Group:PastureModified 
##          1         2         3         4
##  0.0879055 0.0168286 0.0709526 0.0962413
## 
## Group:PastureNative 
##          1         2         3         4
##  0.0879055 0.0168286 0.0709526 0.0962413
## 
## 
## Real Parameter p
##  Session:1Group:PastureModified 
##          1         2         3
##  0.6466952 0.6466952 0.6466952
## 
##  Session:2Group:PastureModified 
##          1         2         3
##  0.6539074 0.6539074 0.6539074
## 
##  Session:3Group:PastureModified 
##          1         2         3
##  0.6865928 0.6865928 0.6865928
## 
##  Session:4Group:PastureModified 
##          1         2         3
##  0.8409406 0.8409406 0.8409406
## 
##  Session:5Group:PastureModified 
##          1         2         3
##  0.6644508 0.6644508 0.6644508
## 
##  Session:1Group:PastureNative 
##          1         2         3
##  0.6466952 0.6466952 0.6466952
## 
##  Session:2Group:PastureNative 
##          1         2         3
##  0.6539074 0.6539074 0.6539074
## 
##  Session:3Group:PastureNative 
##          1         2         3
##  0.6865928 0.6865928 0.6865928
## 
##  Session:4Group:PastureNative 
##          1         2         3
##  0.8409406 0.8409406 0.8409406
## 
##  Session:5Group:PastureNative 
##          1         2         3
##  0.6644508 0.6644508 0.6644508
## 
## 
## ***** Starting  ~session ~Pasture ~time*Pasture ~time RDOccupEG 4
## 
## Note: only 18 parameters counted of 19 specified parameters
## 
## AICc and parameter count have been adjusted upward
## 
## Output summary for RDOccupEG model
## Name : Psi(~Pasture)Epsilon(~time)Gamma(~time * Pasture)p(~session) 
## 
## Npar :  19  (unadjusted=18)
## -2lnL:  1712.075
## AICc :  1750.607  (unadjusted=1748.5538)
## 
## Beta
##                              estimate        se         lcl         ucl
## Psi:(Intercept)            -1.2116258 0.2359949  -1.6741759  -0.7490757
## Psi:PastureNative           1.1807539 0.2909556   0.6104809   1.7510268
## Epsilon:(Intercept)        -2.5239920 0.4497066  -3.4054169  -1.6425670
## Epsilon:time2               0.0298064 0.6562341  -1.2564125   1.3160254
## Epsilon:time3               0.7337478 0.5682024  -0.3799289   1.8474245
## Epsilon:time4               0.9431004 0.6117750  -0.2559786   2.1421794
## Gamma:(Intercept)          -2.7293984 0.5774503  -3.8612011  -1.5975957
## Gamma:time2                -1.1243139 1.2922289  -3.6570825   1.4084548
## Gamma:time3                -1.0093895 1.2034924  -3.3682347   1.3494557
## Gamma:time4                 0.2316498 0.7452488  -1.2290380   1.6923375
## Gamma:PastureNative         1.2643446 0.6733714  -0.0554635   2.5841526
## Gamma:time2:PastureNative -12.1146750 0.0000000 -12.1146750 -12.1146750
## Gamma:time3:PastureNative   0.5325512 1.3144784  -2.0438266   3.1089289
## Gamma:time4:PastureNative  -0.7361701 0.9171421  -2.5337687   1.0614284
## p:(Intercept)               0.8072217 0.2711390   0.2757893   1.3386542
## p:session2                 -0.1804033 0.3269619  -0.8212487   0.4604421
## p:session3                 -0.0194137 0.3314947  -0.6691433   0.6303160
## p:session4                  0.8518957 0.4236257   0.0215894   1.6822021
## p:session5                 -0.1268057 0.3793323  -0.8702970   0.6166855
## 
## 
## Real Parameter Psi
## Group:PastureModified 
##          1
##  0.2294135
## 
## Group:PastureNative 
##          1
##  0.4922826
## 
## 
## Real Parameter Epsilon
## Group:PastureModified 
##          1         2         3         4
##  0.0741933 0.0762668 0.1430428 0.1706693
## 
## Group:PastureNative 
##          1         2         3         4
##  0.0741933 0.0762668 0.1430428 0.1706693
## 
## 
## Real Parameter Gamma
## Group:PastureModified 
##          1         2         3         4
##  0.0612608 0.0207607 0.0232304 0.0760162
## 
## Group:PastureNative 
##          1           2         3         4
##  0.1876956 4.11259e-07 0.1254401 0.1224346
## 
## 
## Real Parameter p
##  Session:1Group:PastureModified 
##          1         2         3
##  0.6915172 0.6915172 0.6915172
## 
##  Session:2Group:PastureModified 
##          1         2         3
##  0.6517677 0.6517677 0.6517677
## 
##  Session:3Group:PastureModified 
##          1         2         3
##  0.6873605 0.6873605 0.6873605
## 
##  Session:4Group:PastureModified 
##          1         2         3
##  0.8401195 0.8401195 0.8401195
## 
##  Session:5Group:PastureModified 
##          1         2         3
##  0.6638315 0.6638315 0.6638315
## 
##  Session:1Group:PastureNative 
##          1         2         3
##  0.6915172 0.6915172 0.6915172
## 
##  Session:2Group:PastureNative 
##          1         2         3
##  0.6517677 0.6517677 0.6517677
## 
##  Session:3Group:PastureNative 
##          1         2         3
##  0.6873605 0.6873605 0.6873605
## 
##  Session:4Group:PastureNative 
##          1         2         3
##  0.8401195 0.8401195 0.8401195
## 
##  Session:5Group:PastureNative 
##          1         2         3
##  0.6638315 0.6638315 0.6638315
# examine individula model results
model.number <-4
summary(model.fits[[model.number]])
## Output summary for RDOccupEG model
## Name : Psi(~Pasture)Epsilon(~time)Gamma(~time * Pasture)p(~session) 
## 
## Npar :  19  (unadjusted=18)
## -2lnL:  1712.075
## AICc :  1750.607  (unadjusted=1748.5538)
## 
## Beta
##                              estimate        se         lcl         ucl
## Psi:(Intercept)            -1.2116258 0.2359949  -1.6741759  -0.7490757
## Psi:PastureNative           1.1807539 0.2909556   0.6104809   1.7510268
## Epsilon:(Intercept)        -2.5239920 0.4497066  -3.4054169  -1.6425670
## Epsilon:time2               0.0298064 0.6562341  -1.2564125   1.3160254
## Epsilon:time3               0.7337478 0.5682024  -0.3799289   1.8474245
## Epsilon:time4               0.9431004 0.6117750  -0.2559786   2.1421794
## Gamma:(Intercept)          -2.7293984 0.5774503  -3.8612011  -1.5975957
## Gamma:time2                -1.1243139 1.2922289  -3.6570825   1.4084548
## Gamma:time3                -1.0093895 1.2034924  -3.3682347   1.3494557
## Gamma:time4                 0.2316498 0.7452488  -1.2290380   1.6923375
## Gamma:PastureNative         1.2643446 0.6733714  -0.0554635   2.5841526
## Gamma:time2:PastureNative -12.1146750 0.0000000 -12.1146750 -12.1146750
## Gamma:time3:PastureNative   0.5325512 1.3144784  -2.0438266   3.1089289
## Gamma:time4:PastureNative  -0.7361701 0.9171421  -2.5337687   1.0614284
## p:(Intercept)               0.8072217 0.2711390   0.2757893   1.3386542
## p:session2                 -0.1804033 0.3269619  -0.8212487   0.4604421
## p:session3                 -0.0194137 0.3314947  -0.6691433   0.6303160
## p:session4                  0.8518957 0.4236257   0.0215894   1.6822021
## p:session5                 -0.1268057 0.3793323  -0.8702970   0.6166855
## 
## 
## Real Parameter Psi
## Group:PastureModified 
##          1
##  0.2294135
## 
## Group:PastureNative 
##          1
##  0.4922826
## 
## 
## Real Parameter Epsilon
## Group:PastureModified 
##          1         2         3         4
##  0.0741933 0.0762668 0.1430428 0.1706693
## 
## Group:PastureNative 
##          1         2         3         4
##  0.0741933 0.0762668 0.1430428 0.1706693
## 
## 
## Real Parameter Gamma
## Group:PastureModified 
##          1         2         3         4
##  0.0612608 0.0207607 0.0232304 0.0760162
## 
## Group:PastureNative 
##          1           2         3         4
##  0.1876956 4.11259e-07 0.1254401 0.1224346
## 
## 
## Real Parameter p
##  Session:1Group:PastureModified 
##          1         2         3
##  0.6915172 0.6915172 0.6915172
## 
##  Session:2Group:PastureModified 
##          1         2         3
##  0.6517677 0.6517677 0.6517677
## 
##  Session:3Group:PastureModified 
##          1         2         3
##  0.6873605 0.6873605 0.6873605
## 
##  Session:4Group:PastureModified 
##          1         2         3
##  0.8401195 0.8401195 0.8401195
## 
##  Session:5Group:PastureModified 
##          1         2         3
##  0.6638315 0.6638315 0.6638315
## 
##  Session:1Group:PastureNative 
##          1         2         3
##  0.6915172 0.6915172 0.6915172
## 
##  Session:2Group:PastureNative 
##          1         2         3
##  0.6517677 0.6517677 0.6517677
## 
##  Session:3Group:PastureNative 
##          1         2         3
##  0.6873605 0.6873605 0.6873605
## 
##  Session:4Group:PastureNative 
##          1         2         3
##  0.8401195 0.8401195 0.8401195
## 
##  Session:5Group:PastureNative 
##          1         2         3
##  0.6638315 0.6638315 0.6638315
model.fits[[model.number]]$results$real
##                             estimate        se          lcl          ucl
## Psi gModified a0 t1     2.294135e-01 0.0417199 1.578682e-01 3.210227e-01
## Psi gNative a0 t1       4.922826e-01 0.0473034 4.008754e-01 5.842087e-01
## Epsilon gModified a0 t1 7.419330e-02 0.0308897 3.212660e-02 1.621161e-01
## Epsilon gModified a1 t2 7.626680e-02 0.0314465 3.327650e-02 1.653000e-01
## Epsilon gModified a2 t3 1.430428e-01 0.0419580 7.862880e-02 2.461294e-01
## Epsilon gModified a3 t4 1.706693e-01 0.0585849 8.377340e-02 3.165582e-01
## Gamma gModified a0 t1   6.126080e-02 0.0332079 2.060900e-02 1.683179e-01
## Gamma gModified a1 t2   2.076070e-02 0.0225531 2.404400e-03 1.571807e-01
## Gamma gModified a2 t3   2.323040e-02 0.0229242 3.272400e-03 1.469623e-01
## Gamma gModified a3 t4   7.601620e-02 0.0329348 3.177450e-02 1.709802e-01
## Gamma gNative a0 t1     1.876956e-01 0.0614644 9.490190e-02 3.373987e-01
## Gamma gNative a1 t2     4.112590e-07 0.0000000 4.112590e-07 4.112590e-07
## Gamma gNative a2 t3     1.254401e-01 0.0426906 6.270200e-02 2.352003e-01
## Gamma gNative a3 t4     1.224346e-01 0.0466704 5.620330e-02 2.463430e-01
## p gModified s1 t1       6.915172e-01 0.0578397 5.685136e-01 7.922685e-01
## p gModified s2 t1       6.517677e-01 0.0423119 5.649875e-01 7.295239e-01
## p gModified s3 t1       6.873605e-01 0.0414540 6.010204e-01 7.624027e-01
## p gModified s4 t1       8.401195e-01 0.0439474 7.345498e-01 9.089105e-01
## p gModified s5 t1       6.638315e-01 0.0593554 5.396912e-01 7.688328e-01
##                         fixed    note
## Psi gModified a0 t1                  
## Psi gNative a0 t1                    
## Epsilon gModified a0 t1              
## Epsilon gModified a1 t2              
## Epsilon gModified a2 t3              
## Epsilon gModified a3 t4              
## Gamma gModified a0 t1                
## Gamma gModified a1 t2                
## Gamma gModified a2 t3                
## Gamma gModified a3 t4                
## Gamma gNative a0 t1                  
## Gamma gNative a1 t2                  
## Gamma gNative a2 t3                  
## Gamma gNative a3 t4                  
## p gModified s1 t1                    
## p gModified s2 t1                    
## p gModified s3 t1                    
## p gModified s4 t1                    
## p gModified s5 t1
model.fits[[model.number]]$results$beta
##                              estimate        se         lcl         ucl
## Psi:(Intercept)            -1.2116258 0.2359949  -1.6741759  -0.7490757
## Psi:PastureNative           1.1807539 0.2909556   0.6104809   1.7510268
## Epsilon:(Intercept)        -2.5239920 0.4497066  -3.4054169  -1.6425670
## Epsilon:time2               0.0298064 0.6562341  -1.2564125   1.3160254
## Epsilon:time3               0.7337478 0.5682024  -0.3799289   1.8474245
## Epsilon:time4               0.9431004 0.6117750  -0.2559786   2.1421794
## Gamma:(Intercept)          -2.7293984 0.5774503  -3.8612011  -1.5975957
## Gamma:time2                -1.1243139 1.2922289  -3.6570825   1.4084548
## Gamma:time3                -1.0093895 1.2034924  -3.3682347   1.3494557
## Gamma:time4                 0.2316498 0.7452488  -1.2290380   1.6923375
## Gamma:PastureNative         1.2643446 0.6733714  -0.0554635   2.5841526
## Gamma:time2:PastureNative -12.1146750 0.0000000 -12.1146750 -12.1146750
## Gamma:time3:PastureNative   0.5325512 1.3144784  -2.0438266   3.1089289
## Gamma:time4:PastureNative  -0.7361701 0.9171421  -2.5337687   1.0614284
## p:(Intercept)               0.8072217 0.2711390   0.2757893   1.3386542
## p:session2                 -0.1804033 0.3269619  -0.8212487   0.4604421
## p:session3                 -0.0194137 0.3314947  -0.6691433   0.6303160
## p:session4                  0.8518957 0.4236257   0.0215894   1.6822021
## p:session5                 -0.1268057 0.3793323  -0.8702970   0.6166855
#NOTE: Because a group was used in the process.data step above, the first half
#of each derived parameter table will be for Modified Pastures, and the second
#will be for Native pastures
model.fits[[model.number]]$results$derived
## $`psi Probability Occupied`
##     estimate         se       lcl       ucl
## 1  0.2294135 0.04171988 0.1476425 0.3111845
## 2  0.2595993 0.04023803 0.1807327 0.3384658
## 3  0.2551717 0.03906549 0.1786034 0.3317401
## 4  0.2359739 0.03486851 0.1676317 0.3043162
## 5  0.2537788 0.03845114 0.1784145 0.3291430
## 6  0.4922826 0.04730337 0.3995680 0.5849972
## 7  0.5510549 0.03938525 0.4738598 0.6282500
## 8  0.5090279 0.03888970 0.4328041 0.5852517
## 9  0.4978027 0.03859611 0.4221543 0.5734511
## 10 0.4743294 0.04562270 0.3849089 0.5637499
## 
## $`lambda Rate of Change`
##    estimate         se       lcl      ucl
## 1 1.1315780 0.13398752 0.8689624 1.394194
## 2 0.9829447 0.07403097 0.8378440 1.128045
## 3 0.9247652 0.08195122 0.7641408 1.085390
## 4 1.0754525 0.13639162 0.8081250 1.342780
## 5 1.1193872 0.08918858 0.9445776 1.294197
## 6 0.9237335 0.03144617 0.8620990 0.985368
## 7 0.9779479 0.06348516 0.8535169 1.102379
## 8 0.9528462 0.08161287 0.7928850 1.112807
## 
## $`log odds lambda`
##    estimate         se       lcl       ucl
## 1 1.1777119 0.18252613 0.8199606 1.5354631
## 2 0.9771017 0.09913543 0.7827963 1.1714072
## 3 0.9015285 0.10627959 0.6932205 1.1098365
## 4 1.1011128 0.18516768 0.7381842 1.4640415
## 5 1.2659283 0.20450086 0.8651066 1.6667500
## 6 0.8446623 0.06067709 0.7257352 0.9635894
## 7 0.9560887 0.12498040 0.7111271 1.2010503
## 8 0.9102979 0.15037607 0.6155608 1.2050350
model.fits[[model.number]]$results$derived$"psi Probability Occupied"
##     estimate         se       lcl       ucl
## 1  0.2294135 0.04171988 0.1476425 0.3111845
## 2  0.2595993 0.04023803 0.1807327 0.3384658
## 3  0.2551717 0.03906549 0.1786034 0.3317401
## 4  0.2359739 0.03486851 0.1676317 0.3043162
## 5  0.2537788 0.03845114 0.1784145 0.3291430
## 6  0.4922826 0.04730337 0.3995680 0.5849972
## 7  0.5510549 0.03938525 0.4738598 0.6282500
## 8  0.5090279 0.03888970 0.4328041 0.5852517
## 9  0.4978027 0.03859611 0.4221543 0.5734511
## 10 0.4743294 0.04562270 0.3849089 0.5637499
model.fits[[model.number]]$results$derived$"lambda Rate of Change"
##    estimate         se       lcl      ucl
## 1 1.1315780 0.13398752 0.8689624 1.394194
## 2 0.9829447 0.07403097 0.8378440 1.128045
## 3 0.9247652 0.08195122 0.7641408 1.085390
## 4 1.0754525 0.13639162 0.8081250 1.342780
## 5 1.1193872 0.08918858 0.9445776 1.294197
## 6 0.9237335 0.03144617 0.8620990 0.985368
## 7 0.9779479 0.06348516 0.8535169 1.102379
## 8 0.9528462 0.08161287 0.7928850 1.112807
model.fits[[model.number]]$results$derived$"log odds lambda"
##    estimate         se       lcl       ucl
## 1 1.1777119 0.18252613 0.8199606 1.5354631
## 2 0.9771017 0.09913543 0.7827963 1.1714072
## 3 0.9015285 0.10627959 0.6932205 1.1098365
## 4 1.1011128 0.18516768 0.7381842 1.4640415
## 5 1.2659283 0.20450086 0.8651066 1.6667500
## 6 0.8446623 0.06067709 0.7257352 0.9635894
## 7 0.9560887 0.12498040 0.7111271 1.2010503
## 8 0.9102979 0.15037607 0.6155608 1.2050350
get.real(model.fits[[model.number]], "Psi", se=TRUE)
## Warning in get.real(model.fits[[model.number]], "Psi", se = TRUE): 
## Improper V-C matrix for beta estimates. Some variances non-positive.
##                     all.diff.index par.index  estimate        se       lcl
## Psi gModified a0 t1              1         1 0.2294135 0.0417199 0.1578682
## Psi gNative a0 t1                2         2 0.4922826 0.0473034 0.4008754
##                           ucl fixed    note    group age time Age Time
## Psi gModified a0 t1 0.3210227               Modified   0    1   0    0
## Psi gNative a0 t1   0.5842087                 Native   0    1   0    0
##                      Pasture
## Psi gModified a0 t1 Modified
## Psi gNative a0 t1     Native
get.real(model.fits[[model.number]], "p",    se=TRUE)
## Warning in get.real(model.fits[[model.number]], "p", se = TRUE): 
## Improper V-C matrix for beta estimates. Some variances non-positive.
##                   all.diff.index par.index  estimate        se       lcl
## p gModified s1 t1             19        15 0.6915172 0.0578397 0.5685136
## p gModified s1 t2             20        15 0.6915172 0.0578397 0.5685136
## p gModified s1 t3             21        15 0.6915172 0.0578397 0.5685136
## p gModified s2 t1             22        16 0.6517677 0.0423119 0.5649875
## p gModified s2 t2             23        16 0.6517677 0.0423119 0.5649875
## p gModified s2 t3             24        16 0.6517677 0.0423119 0.5649875
## p gModified s3 t1             25        17 0.6873605 0.0414540 0.6010204
## p gModified s3 t2             26        17 0.6873605 0.0414540 0.6010204
## p gModified s3 t3             27        17 0.6873605 0.0414540 0.6010204
## p gModified s4 t1             28        18 0.8401195 0.0439474 0.7345498
## p gModified s4 t2             29        18 0.8401195 0.0439474 0.7345498
## p gModified s4 t3             30        18 0.8401195 0.0439474 0.7345498
## p gModified s5 t1             31        19 0.6638315 0.0593554 0.5396912
## p gModified s5 t2             32        19 0.6638315 0.0593554 0.5396912
## p gModified s5 t3             33        19 0.6638315 0.0593554 0.5396912
## p gNative s1 t1               34        15 0.6915172 0.0578397 0.5685136
## p gNative s1 t2               35        15 0.6915172 0.0578397 0.5685136
## p gNative s1 t3               36        15 0.6915172 0.0578397 0.5685136
## p gNative s2 t1               37        16 0.6517677 0.0423119 0.5649875
## p gNative s2 t2               38        16 0.6517677 0.0423119 0.5649875
## p gNative s2 t3               39        16 0.6517677 0.0423119 0.5649875
## p gNative s3 t1               40        17 0.6873605 0.0414540 0.6010204
## p gNative s3 t2               41        17 0.6873605 0.0414540 0.6010204
## p gNative s3 t3               42        17 0.6873605 0.0414540 0.6010204
## p gNative s4 t1               43        18 0.8401195 0.0439474 0.7345498
## p gNative s4 t2               44        18 0.8401195 0.0439474 0.7345498
## p gNative s4 t3               45        18 0.8401195 0.0439474 0.7345498
## p gNative s5 t1               46        19 0.6638315 0.0593554 0.5396912
## p gNative s5 t2               47        19 0.6638315 0.0593554 0.5396912
## p gNative s5 t3               48        19 0.6638315 0.0593554 0.5396912
##                         ucl fixed    note    group time session Time
## p gModified s1 t1 0.7922685               Modified    1       1    0
## p gModified s1 t2 0.7922685               Modified    2       1    1
## p gModified s1 t3 0.7922685               Modified    3       1    2
## p gModified s2 t1 0.7295239               Modified    1       2    0
## p gModified s2 t2 0.7295239               Modified    2       2    1
## p gModified s2 t3 0.7295239               Modified    3       2    2
## p gModified s3 t1 0.7624027               Modified    1       3    0
## p gModified s3 t2 0.7624027               Modified    2       3    1
## p gModified s3 t3 0.7624027               Modified    3       3    2
## p gModified s4 t1 0.9089105               Modified    1       4    0
## p gModified s4 t2 0.9089105               Modified    2       4    1
## p gModified s4 t3 0.9089105               Modified    3       4    2
## p gModified s5 t1 0.7688328               Modified    1       5    0
## p gModified s5 t2 0.7688328               Modified    2       5    1
## p gModified s5 t3 0.7688328               Modified    3       5    2
## p gNative s1 t1   0.7922685                 Native    1       1    0
## p gNative s1 t2   0.7922685                 Native    2       1    1
## p gNative s1 t3   0.7922685                 Native    3       1    2
## p gNative s2 t1   0.7295239                 Native    1       2    0
## p gNative s2 t2   0.7295239                 Native    2       2    1
## p gNative s2 t3   0.7295239                 Native    3       2    2
## p gNative s3 t1   0.7624027                 Native    1       3    0
## p gNative s3 t2   0.7624027                 Native    2       3    1
## p gNative s3 t3   0.7624027                 Native    3       3    2
## p gNative s4 t1   0.9089105                 Native    1       4    0
## p gNative s4 t2   0.9089105                 Native    2       4    1
## p gNative s4 t3   0.9089105                 Native    3       4    2
## p gNative s5 t1   0.7688328                 Native    1       5    0
## p gNative s5 t2   0.7688328                 Native    2       5    1
## p gNative s5 t3   0.7688328                 Native    3       5    2
##                    Pasture
## p gModified s1 t1 Modified
## p gModified s1 t2 Modified
## p gModified s1 t3 Modified
## p gModified s2 t1 Modified
## p gModified s2 t2 Modified
## p gModified s2 t3 Modified
## p gModified s3 t1 Modified
## p gModified s3 t2 Modified
## p gModified s3 t3 Modified
## p gModified s4 t1 Modified
## p gModified s4 t2 Modified
## p gModified s4 t3 Modified
## p gModified s5 t1 Modified
## p gModified s5 t2 Modified
## p gModified s5 t3 Modified
## p gNative s1 t1     Native
## p gNative s1 t2     Native
## p gNative s1 t3     Native
## p gNative s2 t1     Native
## p gNative s2 t2     Native
## p gNative s2 t3     Native
## p gNative s3 t1     Native
## p gNative s3 t2     Native
## p gNative s3 t3     Native
## p gNative s4 t1     Native
## p gNative s4 t2     Native
## p gNative s4 t3     Native
## p gNative s5 t1     Native
## p gNative s5 t2     Native
## p gNative s5 t3     Native
# collect models and make AICc table
model.set <- RMark::collect.models( type=NULL)
model.set
##                                                          model npar
## 4 Psi(~Pasture)Epsilon(~time)Gamma(~time * Pasture)p(~session)   19
## 3           Psi(~Pasture)Epsilon(~time)Gamma(~time)p(~session)   15
## 2                 Psi(~1)Epsilon(~time)Gamma(~time)p(~session)   14
## 1                             Psi(~1)Epsilon(~1)Gamma(~1)p(~1)    4
##       AICc DeltaAICc       weight  Deviance
## 4 1750.607  0.000000 6.514053e-01 -1130.993
## 3 1751.858  1.250483 3.485880e-01 -1121.545
## 2 1774.894 24.286679 3.467896e-06 -1096.467
## 1 1775.043 24.435807 3.218720e-06 -1076.053
# model averaging in the usual way
RMark::model.average(model.set, "Psi")
## Warning in get.real(model, parameter, design = model$design.matrix, se = TRUE, : 
## Improper V-C matrix for beta estimates. Some variances non-positive.
## Warning in get.real(model, parameter, design = model$design.matrix, se = TRUE, : 
## Improper V-C matrix for beta estimates. Some variances non-positive.
##                     par.index  estimate         se fixed    note    group
## Psi gModified a0 t1         1 0.2275842 0.04176069               Modified
## Psi gNative a0 t1           2 0.5054055 0.05157205                 Native
##                     age time Age Time  Pasture
## Psi gModified a0 t1   0    1   0    0 Modified
## Psi gNative a0 t1     0    1   0    0   Native
RMark::model.average(model.set, "p")
## Warning in get.real(model, parameter, design = model$design.matrix, se = TRUE, : 
## Improper V-C matrix for beta estimates. Some variances non-positive.

## Warning in get.real(model, parameter, design = model$design.matrix, se = TRUE, : 
## Improper V-C matrix for beta estimates. Some variances non-positive.
##                   par.index  estimate         se fixed    note    group
## p gModified s1 t1        19 0.6758927 0.06408927               Modified
## p gModified s1 t2        20 0.6758927 0.06408927               Modified
## p gModified s1 t3        21 0.6758927 0.06408927               Modified
## p gModified s2 t1        22 0.6525136 0.04278745               Modified
## p gModified s2 t2        23 0.6525136 0.04278745               Modified
## p gModified s2 t3        24 0.6525136 0.04278745               Modified
## p gModified s3 t1        25 0.6870929 0.04138822               Modified
## p gModified s3 t2        26 0.6870929 0.04138822               Modified
## p gModified s3 t3        27 0.6870929 0.04138822               Modified
## p gModified s4 t1        28 0.8404052 0.04358461               Modified
## p gModified s4 t2        29 0.8404052 0.04358461               Modified
## p gModified s4 t3        30 0.8404052 0.04358461               Modified
## p gModified s5 t1        31 0.6640475 0.05932827               Modified
## p gModified s5 t2        32 0.6640475 0.05932827               Modified
## p gModified s5 t3        33 0.6640475 0.05932827               Modified
## p gNative s1 t1          34 0.6758927 0.06408927                 Native
## p gNative s1 t2          35 0.6758927 0.06408927                 Native
## p gNative s1 t3          36 0.6758927 0.06408927                 Native
## p gNative s2 t1          37 0.6525136 0.04278745                 Native
## p gNative s2 t2          38 0.6525136 0.04278745                 Native
## p gNative s2 t3          39 0.6525136 0.04278745                 Native
## p gNative s3 t1          40 0.6870929 0.04138822                 Native
## p gNative s3 t2          41 0.6870929 0.04138822                 Native
## p gNative s3 t3          42 0.6870929 0.04138822                 Native
## p gNative s4 t1          43 0.8404052 0.04358461                 Native
## p gNative s4 t2          44 0.8404052 0.04358461                 Native
## p gNative s4 t3          45 0.8404052 0.04358461                 Native
## p gNative s5 t1          46 0.6640475 0.05932827                 Native
## p gNative s5 t2          47 0.6640475 0.05932827                 Native
## p gNative s5 t3          48 0.6640475 0.05932827                 Native
##                   time session Time  Pasture
## p gModified s1 t1    1       1    0 Modified
## p gModified s1 t2    2       1    1 Modified
## p gModified s1 t3    3       1    2 Modified
## p gModified s2 t1    1       2    0 Modified
## p gModified s2 t2    2       2    1 Modified
## p gModified s2 t3    3       2    2 Modified
## p gModified s3 t1    1       3    0 Modified
## p gModified s3 t2    2       3    1 Modified
## p gModified s3 t3    3       3    2 Modified
## p gModified s4 t1    1       4    0 Modified
## p gModified s4 t2    2       4    1 Modified
## p gModified s4 t3    3       4    2 Modified
## p gModified s5 t1    1       5    0 Modified
## p gModified s5 t2    2       5    1 Modified
## p gModified s5 t3    3       5    2 Modified
## p gNative s1 t1      1       1    0   Native
## p gNative s1 t2      2       1    1   Native
## p gNative s1 t3      3       1    2   Native
## p gNative s2 t1      1       2    0   Native
## p gNative s2 t2      2       2    1   Native
## p gNative s2 t3      3       2    2   Native
## p gNative s3 t1      1       3    0   Native
## p gNative s3 t2      2       3    1   Native
## p gNative s3 t3      3       3    2   Native
## p gNative s4 t1      1       4    0   Native
## p gNative s4 t2      2       4    1   Native
## p gNative s4 t3      3       4    2   Native
## p gNative s5 t1      1       5    0   Native
## p gNative s5 t2      2       5    1   Native
## p gNative s5 t3      3       5    2   Native
# Model average the derived parameters
# Because RMarks stores psi in different places, we standarize the dervied parameters.
# We need to do this here because collect.models re-extracts the output from MARK and wipes anything else
model.set[-length(model.set)] <- plyr::llply(model.set[-length(model.set)], function(x){RMark.add.derived(x)})
#NOTE: Because a group was used in the process.data step above, the first half
#of each derived parameter table will be for Modified Pastures, and the second
#will be for Native pastures
RMark.model.average.derived(model.set, "all_psi")
## Loading required package: plyr
## Loading required package: boot
## 
## Attaching package: 'boot'
## The following object is masked from 'package:car':
## 
##     logit
##     estimate         se       lcl       ucl
## 1  0.2275842 0.04176069 0.1560900 0.3194300
## 2  0.2653687 0.04148887 0.1922637 0.3540854
## 3  0.2594516 0.03933514 0.1899901 0.3435379
## 4  0.2519136 0.04110273 0.1800643 0.3405256
## 5  0.2708868 0.04437625 0.1930214 0.3659201
## 6  0.5054055 0.05157204 0.4054658 0.6049151
## 7  0.5447314 0.04042789 0.4650320 0.6222035
## 8  0.5060471 0.03892168 0.4302097 0.5816072
## 9  0.4864803 0.04078150 0.4075635 0.5660770
## 10 0.4615033 0.04725620 0.3712208 0.5543838
RMark.model.average.derived(model.set, "lambda Rate of Change")
##    estimate         se       lcl       ucl
## 1 1.1665506 0.15610787 0.8605848 1.4725164
## 2 0.9779069 0.06986316 0.8409776 1.1148362
## 3 0.9695658 0.10433957 0.7650640 1.1740676
## 4 1.0753309 0.12732884 0.8257709 1.3248908
## 5 1.0797347 0.09571588 0.8921351 1.2673344
## 6 0.9291010 0.03368414 0.8630813 0.9951207
## 7 0.9611494 0.06330744 0.8370691 1.0852297
## 8 0.9484673 0.07878500 0.7940516 1.1028831
RMark.model.average.derived(model.set, "log odds lambda")
##    estimate         se       lcl       ucl
## 1 1.2274427 0.21643542 0.8032371 1.6516484
## 2 0.9700909 0.09399868 0.7858568 1.1543249
## 3 0.9617135 0.13966705 0.6879711 1.2354559
## 4 1.1034195 0.17610649 0.7582571 1.4485819
## 5 1.1774345 0.21597697 0.7541274 1.6007416
## 6 0.8563344 0.06552356 0.7279106 0.9847582
## 7 0.9256004 0.12134654 0.6877656 1.1634353
## 8 0.9045581 0.14211298 0.6260218 1.1830944
# model averaging of derived parameters such as the occupancy at each time step
psi.ma <- RMark.model.average.derived(model.set, "all_psi")
# Note that due to the categorical covariate, there are 10 estimates, but only 5 years
# worth of data. Need to account for this when making Year column
psi.ma$Year <- rep(1:(nrow(psi.ma)/2),2)
psi.ma$parameter <- 'psi'
psi.ma$Pasture = c(rep("Modified",5),rep("Native",5))
psi.ma
##     estimate         se       lcl       ucl Year parameter  Pasture
## 1  0.2275842 0.04176069 0.1560900 0.3194300    1       psi Modified
## 2  0.2653687 0.04148887 0.1922637 0.3540854    2       psi Modified
## 3  0.2594516 0.03933514 0.1899901 0.3435379    3       psi Modified
## 4  0.2519136 0.04110273 0.1800643 0.3405256    4       psi Modified
## 5  0.2708868 0.04437625 0.1930214 0.3659201    5       psi Modified
## 6  0.5054055 0.05157204 0.4054658 0.6049151    1       psi   Native
## 7  0.5447314 0.04042789 0.4650320 0.6222035    2       psi   Native
## 8  0.5060471 0.03892168 0.4302097 0.5816072    3       psi   Native
## 9  0.4864803 0.04078150 0.4075635 0.5660770    4       psi   Native
## 10 0.4615033 0.04725620 0.3712208 0.5543838    5       psi   Native
# likely more interested in colonization and extinction probabilities
epsilon.ma <- RMark::model.average(model.set, "Epsilon", vcv=TRUE)$estimates
## Warning in get.real(model, parameter, design = model$design.matrix, se = TRUE, : 
## Improper V-C matrix for beta estimates. Some variances non-positive.

## Warning in get.real(model, parameter, design = model$design.matrix, se = TRUE, : 
## Improper V-C matrix for beta estimates. Some variances non-positive.
epsilon.ma$Year <- rep(1:(nrow(epsilon.ma)/2),2)
epsilon.ma$parameter <- 'epsilon'
epsilon.ma
##                         par.index   estimate         se        lcl
## Epsilon gModified a0 t1         3 0.07354712 0.03073059 0.03175632
## Epsilon gModified a1 t2         4 0.07604111 0.03132233 0.03320869
## Epsilon gModified a2 t3         5 0.14235122 0.04165533 0.07837575
## Epsilon gModified a3 t4         6 0.17054083 0.05852733 0.08372883
## Epsilon gNative a0 t1           7 0.07354712 0.03073059 0.03175632
## Epsilon gNative a1 t2           8 0.07604111 0.03132233 0.03320869
## Epsilon gNative a2 t3           9 0.14235122 0.04165533 0.07837575
## Epsilon gNative a3 t4          10 0.17054083 0.05852733 0.08372883
##                               ucl fixed    note    group age time Age Time
## Epsilon gModified a0 t1 0.1611790               Modified   0    1   0    0
## Epsilon gModified a1 t2 0.1647068               Modified   1    2   1    1
## Epsilon gModified a2 t3 0.2446834               Modified   2    3   2    2
## Epsilon gModified a3 t4 0.3162912               Modified   3    4   3    3
## Epsilon gNative a0 t1   0.1611790                 Native   0    1   0    0
## Epsilon gNative a1 t2   0.1647068                 Native   1    2   1    1
## Epsilon gNative a2 t3   0.2446834                 Native   2    3   2    2
## Epsilon gNative a3 t4   0.3162912                 Native   3    4   3    3
##                          Pasture Year parameter
## Epsilon gModified a0 t1 Modified    1   epsilon
## Epsilon gModified a1 t2 Modified    2   epsilon
## Epsilon gModified a2 t3 Modified    3   epsilon
## Epsilon gModified a3 t4 Modified    4   epsilon
## Epsilon gNative a0 t1     Native    1   epsilon
## Epsilon gNative a1 t2     Native    2   epsilon
## Epsilon gNative a2 t3     Native    3   epsilon
## Epsilon gNative a3 t4     Native    4   epsilon
gamma.ma <- RMark::model.average(model.set, "Gamma", vcv=TRUE)$estimates
## 
## Model 2dropped from the model averaging because one or more beta variances are not positive
## 
## Model 4dropped from the model averaging because one or more beta variances are not positive
gamma.ma$Year <- rep(1:(nrow(gamma.ma)/2),2)
gamma.ma$parameter <- 'gamma'
gamma.ma
##                       par.index   estimate         se         lcl
## Gamma gModified a0 t1        11 0.08790530 0.03988182 0.035080407
## Gamma gModified a1 t2        12 0.01682912 0.01884814 0.001832299
## Gamma gModified a2 t3        13 0.07095256 0.02383591 0.036233428
## Gamma gModified a3 t4        14 0.09624105 0.02828349 0.053300198
## Gamma gNative a0 t1          15 0.08790530 0.03988182 0.035080407
## Gamma gNative a1 t2          16 0.01682912 0.01884814 0.001832299
## Gamma gNative a2 t3          17 0.07095256 0.02383591 0.036233428
## Gamma gNative a3 t4          18 0.09624105 0.02828349 0.053300198
##                             ucl fixed    note    group age time Age Time
## Gamma gModified a0 t1 0.2034992               Modified   0    1   0    0
## Gamma gModified a1 t2 0.1376444               Modified   1    2   1    1
## Gamma gModified a2 t3 0.1343038               Modified   2    3   2    2
## Gamma gModified a3 t4 0.1676505               Modified   3    4   3    3
## Gamma gNative a0 t1   0.2034992                 Native   0    1   0    0
## Gamma gNative a1 t2   0.1376444                 Native   1    2   1    1
## Gamma gNative a2 t3   0.1343038                 Native   2    3   2    2
## Gamma gNative a3 t4   0.1676505                 Native   3    4   3    3
##                        Pasture Year parameter
## Gamma gModified a0 t1 Modified    1     gamma
## Gamma gModified a1 t2 Modified    2     gamma
## Gamma gModified a2 t3 Modified    3     gamma
## Gamma gModified a3 t4 Modified    4     gamma
## Gamma gNative a0 t1     Native    1     gamma
## Gamma gNative a1 t2     Native    2     gamma
## Gamma gNative a2 t3     Native    3     gamma
## Gamma gNative a3 t4     Native    4     gamma
all.est <- plyr::rbind.fill(psi.ma, epsilon.ma, gamma.ma)


ggplot(data=all.est, aes(x=Year,y=estimate, color=parameter))+
  ggtitle("Estimated occupancy, extinction, colonization, over time")+
  geom_point(position=position_dodge(w=0.2))+
  geom_line(position=position_dodge(w=0.2))+
  ylim(0,1)+
  geom_errorbar(aes(ymin=lcl, ymax=ucl), width=.1,position=position_dodge(w=0.2))+
  scale_x_continuous(breaks=1:10)+
  facet_wrap(~Pasture)

cleanup(ask=FALSE)