# Single Species, Multi Season Occupancy analyais

#   nightingales over four seasons with covariates on elevation and stream type.
#   We will use only the last 2 years (unsure why)

# 2018-08-15 Code contributed by Carl James Schwarz (cschwarz.stat.sfu.cs@gmail.com)
#  RMark package

library(readxl)
library(RMark)
## This is RMark 2.2.5
##  Documentation available at http://www.phidot.org/software/mark/rmark/RMarkDocumentation.zip
library(ggplot2)

# Get the RPResence additional functions 
source(file.path("..","..","..","AdditionalFunctions","RMark.additional.functions.R"))

# get the data read in
# Data for detections should be a data frame with rows corresponding to sites
# and columns to visits.
# The usual 1=detected; 0=not detected; NA=not visited is used.

input.data <- read.csv(file.path("..","nightingales.csv"), header=TRUE, as.is=TRUE, strip.white=TRUE)
head(input.data)
##   Site V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19
## 1    1  0  1  0  1  0  0  0  0  0   0   0   1   0   0   0   0   0   1   1
## 2    2  0  1  1  1  1  1  1  0  0   0   0   0   0   1   0   1   0   0   0
## 3    3  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0   0
## 4    4  0  0  1  1  1  1  1  0  0   0   0   0   0   0   0   0   0   0   0
## 5    5  0  0  0  0  1  0  0  0  0   0   0   0   0   1   0   1   0   0   0
## 6    6  1  1  1  1  1  1  1  1  0   0   1   0   0   1   0   1   0   0   1
##   V20 V21 V22 V23 V24 V25 V26 V27 V28 V29 V30 V31 V32 V33 V34 V35 V36 V37
## 1   1   1   1   1   1   1   1   1   0   1   1   1   1   1   1   1   0   0
## 2   0   1   1   1   0   0   0   0   1   1   1   1   0   0   0   1   1   0
## 3   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## 4   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## 5   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   1   0
## 6   1   1   1   0   0   0   0   0   0   0   0   0   0   0   0   1   1   1
##   V38 V39 V40 V41 V42 V43 V44 V45 V46 V47 V48 V49 V50 V51 V52 V53 V54 V55
## 1   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## 2   0   1   0   1   0   1   1   1   0   0   0   0   1   0   1   0   0   1
## 3   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## 4   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## 5   1   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## 6   1   1   0   0   0   0   1   0   1   0   0   0   1   1   1   0   1   0
##   V56 V57 V58 V59 V60 V61 V62 V63 V64 V65 V66 V67 V68 V69 V70 V71 V72 V73
## 1   0   0   0   0   1   0   0   0   0   0   0   1   1   0   0   1   0   0
## 2   0   0   0   1   0   1   0   0   0   0   0   1   1   1   1   1   1   0
## 3   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## 4   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## 5   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## 6   1   0   0   1   1   0   1   0   0   0   0   1   1   1   1   1   1   0
##   V74 V75 V76 V77 V78 V79 V80
## 1   0   1   0   0   0   0   0
## 2   0   0   0   0   0   0   0
## 3   0   1   0   0   1   0   0
## 4   0   0   0   0   0   0   0
## 5   0   0   0   0   0   0   0
## 6   0   1   1   1   1   0   0
input.history <- input.data[, -1]
head(input.history)
##   V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20
## 1  0  1  0  1  0  0  0  0  0   0   0   1   0   0   0   0   0   1   1   1
## 2  0  1  1  1  1  1  1  0  0   0   0   0   0   1   0   1   0   0   0   0
## 3  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0   0   0
## 4  0  0  1  1  1  1  1  0  0   0   0   0   0   0   0   0   0   0   0   0
## 5  0  0  0  0  1  0  0  0  0   0   0   0   0   1   0   1   0   0   0   0
## 6  1  1  1  1  1  1  1  1  0   0   1   0   0   1   0   1   0   0   1   1
##   V21 V22 V23 V24 V25 V26 V27 V28 V29 V30 V31 V32 V33 V34 V35 V36 V37 V38
## 1   1   1   1   1   1   1   1   0   1   1   1   1   1   1   1   0   0   1
## 2   1   1   1   0   0   0   0   1   1   1   1   0   0   0   1   1   0   0
## 3   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## 4   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## 5   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   1   0   1
## 6   1   1   0   0   0   0   0   0   0   0   0   0   0   0   1   1   1   1
##   V39 V40 V41 V42 V43 V44 V45 V46 V47 V48 V49 V50 V51 V52 V53 V54 V55 V56
## 1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## 2   1   0   1   0   1   1   1   0   0   0   0   1   0   1   0   0   1   0
## 3   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## 4   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## 5   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## 6   1   0   0   0   0   1   0   1   0   0   0   1   1   1   0   1   0   1
##   V57 V58 V59 V60 V61 V62 V63 V64 V65 V66 V67 V68 V69 V70 V71 V72 V73 V74
## 1   0   0   0   1   0   0   0   0   0   0   1   1   0   0   1   0   0   0
## 2   0   0   1   0   1   0   0   0   0   0   1   1   1   1   1   1   0   0
## 3   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## 4   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## 5   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## 6   0   0   1   1   0   1   0   0   0   0   1   1   1   1   1   1   0   0
##   V75 V76 V77 V78 V79 V80
## 1   1   0   0   0   0   0
## 2   0   0   0   0   0   0
## 3   1   0   0   1   0   0
## 4   0   0   0   0   0   0
## 5   0   0   0   0   0   0
## 6   1   1   1   1   0   0
# do some basic checks on your data 
# e.g. check number of sites; number of visits etc
nrow(input.history)
## [1] 55
ncol(input.history)
## [1] 80
range(input.history, na.rm=TRUE)
## [1] 0 1
sum(is.na(input.history))
## [1] 0
# Site covariate. Here there are none
site.covar <- NULL
row.names(site.covar) <- NULL
head(site.covar)
## NULL
#Format the capture history to be used by RMark
input.history <- data.frame(freq=1,
                            ch=apply(input.history,1,paste, collapse=""), stringsAsFactors=FALSE)
head(input.history)
##   freq
## 1    1
## 2    1
## 3    1
## 4    1
## 5    1
## 6    1
##                                                                                 ch
## 1 01010000000100000111111111101111111001000000000000000000000100000011001000100000
## 2 01111110000001010000111000011110001100101011100001010010001010000011111100000000
## 3 00000000000000000000000000000000000000000000000000000000000000000000000000100100
## 4 00111110000000000000000000000000000000000000000000000000000000000000000000000000
## 5 00001000000001010000000000000000001101100000000000000000000000000000000000000000
## 6 11111111001001010011110000000000001111100001010001110101001101000011111100111100
#Add site covariates to input history
#input.history = cbind(input.history,site.covar)
#head(input.history)

#Create the RMark data structure
# 10 years with 8 visits per year
max.visit.per.year <- 8
n.season <- 10

nightingale.data <- process.data(data=input.history, 
                                model="RDOccupEG",
                                time.intervals=c( rep( c(rep(0,max.visit.per.year-1),1),n.season-1),
                                                  rep(0,max.visit.per.year-1)))
summary(nightingale.data)
##                  Length Class      Mode     
## data              2     data.frame list     
## model             1     -none-     character
## mixtures          1     -none-     numeric  
## freq             55     -none-     numeric  
## nocc              1     -none-     numeric  
## nocc.secondary   10     -none-     numeric  
## time.intervals   79     -none-     numeric  
## begin.time        1     -none-     numeric  
## age.unit          1     -none-     numeric  
## initial.ages      1     -none-     numeric  
## group.covariates  0     -none-     NULL     
## nstrata           1     -none-     numeric  
## strata.labels     0     -none-     NULL     
## counts            0     -none-     NULL     
## reverse           1     -none-     logical  
## areas             0     -none-     NULL     
## events            0     -none-     NULL
# all time-specific covariates must be added to the ddl in the loop below


# Get the parameter names
# What are the parameter names for Single Season Single Species models
setup.parameters("RDOccupEG", check=TRUE)
## [1] "Psi"     "Epsilon" "Gamma"   "p"
# define the list of models to fit
# Notice the commas between the column and the placement of the quotes
# Define the models.
#    model.type can be RDOccupPE, RDOccupPG, RDOccupEG~time
#The random occupancy model cannot be fit here. See the other code in this directory.
# The reserved keywords can be found by looking at the ddl structures earlier

model.list.csv <- textConnection("
p,               Psi,          Gamma,      Epsilon,  model.type
~1,              ~1,              ~1,           ~1,       RDOccupEG
~session,        ~1,              ~1,           ~1,       RDOccupEG
~session,        ~1,              ~time,        ~time,    RDOccupEG")


model.list <- read.csv(model.list.csv, header=TRUE, as.is=TRUE, strip.white=TRUE)
model.list$model.number <- 1:nrow(model.list)
model.list
##          p Psi Gamma Epsilon model.type model.number
## 1       ~1  ~1    ~1      ~1  RDOccupEG            1
## 2 ~session  ~1    ~1      ~1  RDOccupEG            2
## 3 ~session  ~1 ~time   ~time  RDOccupEG            3
# fit the models
myobs <- ls()
myobs <- myobs[ grepl("m...",myobs,fixed=TRUE)]
cat("Removing ", myobs, "\n")
## Removing
rm(list=myobs)

model.fits <- plyr::dlply(model.list, "model.number", function(x,input.history){
  cat("\n\n***** Starting ", unlist(x), "\n")

  # we need to process the data in the loop to allow for different data types
  # notice that max.visits.per.year and n.season are defined outside the function (bad programming practise)
  input.data<- process.data(data=input.history, model=x$model.type,
                             time.intervals=c( rep( c(rep(0,max.visit.per.year-1),1),n.season-1),
                                               rep(0,max.visit.per.year-1)))
  # set up the ddls as needed for time-varying covariates.
  # you need to do this in the loop because different paraemterizations have different ddl structures
  input.ddl <- make.design.data(input.data)
  
  model.parameters=list(
    Psi   =list(formula=as.formula(eval(x$Psi))),
    p     =list(formula=as.formula(eval(x$p))),
    Epsilon=list(formula=as.formula(eval(x$Epsilon))),
    Gamma  =list(formula=as.formula(eval(x$Gamma)))
  )
  if(x$model.type == "RDOccupPG"){  # psi, gamma, p formulation
    model.parameters$Epsilon= NULL
  }
  if(x$model.type == "RDOccupPE"){  # psi, epsilon, p formulation
    model.parameters$Gamma = NULL
  }  
  
  fit <- RMark::mark(input.data, ddl=input.ddl,
                     model=x$model.type,
                     model.parameters=model.parameters
                     #,brief=TRUE,output=FALSE, delete=TRUE
                     #,invisible=TRUE,output=TRUE  # set for debugging
  )

  mnumber <- paste("m...",formatC(x$model.number, width = 3, format = "d", flag = "0"),sep="")
  assign( mnumber, fit, envir=.GlobalEnv)
  #browser()
  fit
  
},input.history=input.history)
## 
## 
## ***** Starting  ~1 ~1 ~1 ~1 RDOccupEG 1 
## 
## Output summary for RDOccupEG model
## Name : Psi(~1)Epsilon(~1)Gamma(~1)p(~1) 
## 
## Npar :  4
## -2lnL:  3810.899
## AICc :  3818.972
## 
## Beta
##                       estimate        se        lcl        ucl
## Psi:(Intercept)      1.4269742 0.3482761  0.7443531  2.1095953
## Epsilon:(Intercept) -0.8329071 0.1350572 -1.0976192 -0.5681950
## Gamma:(Intercept)   -1.0798478 0.1529212 -1.3795734 -0.7801223
## p:(Intercept)       -0.0524793 0.0425940 -0.1359635  0.0310049
## 
## 
## Real Parameter Psi
##  
##          1
##  0.8064294
## 
## 
## Real Parameter Epsilon
##  
##          1         2         3         4         5         6         7
##  0.3030307 0.3030307 0.3030307 0.3030307 0.3030307 0.3030307 0.3030307
##          8         9
##  0.3030307 0.3030307
## 
## 
## Real Parameter Gamma
##  
##          1         2         3         4         5         6         7
##  0.2535348 0.2535348 0.2535348 0.2535348 0.2535348 0.2535348 0.2535348
##          8         9
##  0.2535348 0.2535348
## 
## 
## Real Parameter p
##  Session:1 
##          1         2         3         4         5         6         7
##  0.4868832 0.4868832 0.4868832 0.4868832 0.4868832 0.4868832 0.4868832
##          8
##  0.4868832
## 
##  Session:2 
##          1         2         3         4         5         6         7
##  0.4868832 0.4868832 0.4868832 0.4868832 0.4868832 0.4868832 0.4868832
##          8
##  0.4868832
## 
##  Session:3 
##          1         2         3         4         5         6         7
##  0.4868832 0.4868832 0.4868832 0.4868832 0.4868832 0.4868832 0.4868832
##          8
##  0.4868832
## 
##  Session:4 
##          1         2         3         4         5         6         7
##  0.4868832 0.4868832 0.4868832 0.4868832 0.4868832 0.4868832 0.4868832
##          8
##  0.4868832
## 
##  Session:5 
##          1         2         3         4         5         6         7
##  0.4868832 0.4868832 0.4868832 0.4868832 0.4868832 0.4868832 0.4868832
##          8
##  0.4868832
## 
##  Session:6 
##          1         2         3         4         5         6         7
##  0.4868832 0.4868832 0.4868832 0.4868832 0.4868832 0.4868832 0.4868832
##          8
##  0.4868832
## 
##  Session:7 
##          1         2         3         4         5         6         7
##  0.4868832 0.4868832 0.4868832 0.4868832 0.4868832 0.4868832 0.4868832
##          8
##  0.4868832
## 
##  Session:8 
##          1         2         3         4         5         6         7
##  0.4868832 0.4868832 0.4868832 0.4868832 0.4868832 0.4868832 0.4868832
##          8
##  0.4868832
## 
##  Session:9 
##          1         2         3         4         5         6         7
##  0.4868832 0.4868832 0.4868832 0.4868832 0.4868832 0.4868832 0.4868832
##          8
##  0.4868832
## 
##  Session:10 
##          1         2         3         4         5         6         7
##  0.4868832 0.4868832 0.4868832 0.4868832 0.4868832 0.4868832 0.4868832
##          8
##  0.4868832
## 
## 
## ***** Starting  ~session ~1 ~1 ~1 RDOccupEG 2 
## 
## Output summary for RDOccupEG model
## Name : Psi(~1)Epsilon(~1)Gamma(~1)p(~session) 
## 
## Npar :  13
## -2lnL:  3566.397
## AICc :  3593.077
## 
## Beta
##                       estimate        se        lcl        ucl
## Psi:(Intercept)      1.4171968 0.3457931  0.7394424  2.0949512
## Epsilon:(Intercept) -0.9217753 0.1417699 -1.1996443 -0.6439063
## Gamma:(Intercept)   -1.1269845 0.1601751 -1.4409276 -0.8130413
## p:(Intercept)        0.0330090 0.1090620 -0.1807525  0.2467706
## p:session2          -1.1916082 0.1728642 -1.5304220 -0.8527944
## p:session3           1.0092192 0.1744336  0.6673293  1.3511090
## p:session4           1.1243693 0.2043931  0.7237588  1.5249798
## p:session5          -0.2825578 0.1725432 -0.6207426  0.0556269
## p:session6          -0.3061072 0.1701695 -0.6396395  0.0274251
## p:session7          -0.0019924 0.1893119 -0.3730439  0.3690590
## p:session8          -1.1188374 0.2294534 -1.5685660 -0.6691089
## p:session9          -0.0942170 0.1919391 -0.4704176  0.2819835
## p:session10         -0.1154180 0.1891406 -0.4861336  0.2552977
## 
## 
## Real Parameter Psi
##  
##          1
##  0.8048986
## 
## 
## Real Parameter Epsilon
##  
##          1         2         3         4         5         6         7
##  0.2845963 0.2845963 0.2845963 0.2845963 0.2845963 0.2845963 0.2845963
##          8         9
##  0.2845963 0.2845963
## 
## 
## Real Parameter Gamma
##  
##         1        2        3        4        5        6        7        8
##  0.244718 0.244718 0.244718 0.244718 0.244718 0.244718 0.244718 0.244718
##         9
##  0.244718
## 
## 
## Real Parameter p
##  Session:1 
##          1         2         3         4         5         6         7
##  0.5082515 0.5082515 0.5082515 0.5082515 0.5082515 0.5082515 0.5082515
##          8
##  0.5082515
## 
##  Session:2 
##          1         2         3         4         5         6         7
##  0.2389219 0.2389219 0.2389219 0.2389219 0.2389219 0.2389219 0.2389219
##          8
##  0.2389219
## 
##  Session:3 
##          1         2         3         4         5         6         7
##  0.7392797 0.7392797 0.7392797 0.7392797 0.7392797 0.7392797 0.7392797
##          8
##  0.7392797
## 
##  Session:4 
##         1        2        3        4        5        6        7        8
##  0.760856 0.760856 0.760856 0.760856 0.760856 0.760856 0.760856 0.760856
## 
##  Session:5 
##          1         2         3         4         5         6         7
##  0.4379346 0.4379346 0.4379346 0.4379346 0.4379346 0.4379346 0.4379346
##          8
##  0.4379346
## 
##  Session:6 
##          1         2         3         4         5         6         7
##  0.4321466 0.4321466 0.4321466 0.4321466 0.4321466 0.4321466 0.4321466
##          8
##  0.4321466
## 
##  Session:7 
##          1         2         3         4         5         6         7
##  0.5077535 0.5077535 0.5077535 0.5077535 0.5077535 0.5077535 0.5077535
##          8
##  0.5077535
## 
##  Session:8 
##          1         2         3         4         5         6         7
##  0.2524046 0.2524046 0.2524046 0.2524046 0.2524046 0.2524046 0.2524046
##          8
##  0.2524046
## 
##  Session:9 
##          1         2         3         4         5         6         7
##  0.4847028 0.4847028 0.4847028 0.4847028 0.4847028 0.4847028 0.4847028
##          8
##  0.4847028
## 
##  Session:10 
##          1         2         3         4         5         6         7
##  0.4794094 0.4794094 0.4794094 0.4794094 0.4794094 0.4794094 0.4794094
##          8
##  0.4794094
## 
## 
## ***** Starting  ~session ~1 ~time ~time RDOccupEG 3 
## 
## Output summary for RDOccupEG model
## Name : Psi(~1)Epsilon(~time)Gamma(~time)p(~session) 
## 
## Npar :  29
## -2lnL:  3533.994
## AICc :  3595.34
## 
## Beta
##                          estimate        se        lcl        ucl
## Psi:(Intercept)      1.4031461000 0.3417650  0.7332868  2.0730055
## Epsilon:(Intercept) -2.3102572000 0.8125807 -3.9029154 -0.7175990
## Epsilon:time2        1.3255168000 0.9147279 -0.4673499  3.1183835
## Epsilon:time3        1.7841484000 0.8846823  0.0501712  3.5181257
## Epsilon:time4       -0.0769521000 1.1160191 -2.2643495  2.1104453
## Epsilon:time5        0.9076214000 0.9464242 -0.9473700  2.7626129
## Epsilon:time6        2.1019332000 0.8898330  0.3578605  3.8460059
## Epsilon:time7        1.7793104000 0.9777432 -0.1370662  3.6956871
## Epsilon:time8        1.4738256000 0.9531283 -0.3943060  3.3419571
## Epsilon:time9        2.0096698000 0.9260584  0.1945953  3.8247442
## Gamma:(Intercept)    0.4967845000 0.7463589 -0.9660790  1.9596481
## Gamma:time2         -2.6410196000 3.0152805 -8.5509695  3.2689304
## Gamma:time3         -3.4414334000 1.2689191 -5.9285148 -0.9543520
## Gamma:time4         -1.5811830000 0.8514516 -3.2500282  0.0876621
## Gamma:time5         -1.2970472000 0.8614353 -2.9854605  0.3913661
## Gamma:time6         -1.8751978000 0.9133852 -3.6654329 -0.0849627
## Gamma:time7         -1.7071197000 0.8672590 -3.4069473 -0.0072922
## Gamma:time8         -1.9943784000 0.9116515 -3.7812154 -0.2075414
## Gamma:time9         -1.3691970000 0.8371373 -3.0099862  0.2715921
## p:(Intercept)        0.0386232000 0.1079577 -0.1729740  0.2502203
## p:session2          -1.3130052000 0.1825759 -1.6708540 -0.9551564
## p:session3           1.0035789000 0.1737524  0.6630242  1.3441337
## p:session4           1.1187878000 0.2037933  0.7193529  1.5182227
## p:session5          -0.2903862000 0.1722299 -0.6279569  0.0471844
## p:session6          -0.3212176000 0.1711305 -0.6566334  0.0141981
## p:session7          -0.0007891196 0.1871691 -0.3676406  0.3660623
## p:session8          -1.1042485000 0.2414087 -1.5774095 -0.6310875
## p:session9          -0.0960527000 0.1905299 -0.4694914  0.2773860
## p:session10         -0.1171112000 0.1876904 -0.4849844  0.2507621
## 
## 
## Real Parameter Psi
##  
##          1
##  0.8026827
## 
## 
## Real Parameter Epsilon
##  
##         1         2         3         4         5         6         7
##  0.090277 0.2719522 0.3714249 0.0841533 0.1973982 0.4481065 0.3702961
##          8         9
##  0.3022869 0.4254139
## 
## 
## Real Parameter Gamma
##  
##          1         2       3         4         5        6         7
##  0.6217034 0.1048712 0.04999 0.2526745 0.3099693 0.201264 0.2296417
##          8         9
##  0.1827847 0.2947526
## 
## 
## Real Parameter p
##  Session:1 
##          1         2         3         4         5         6         7
##  0.5096546 0.5096546 0.5096546 0.5096546 0.5096546 0.5096546 0.5096546
##          8
##  0.5096546
## 
##  Session:2 
##         1        2        3        4        5        6        7        8
##  0.218508 0.218508 0.218508 0.218508 0.218508 0.218508 0.218508 0.218508
## 
##  Session:3 
##          1         2         3         4         5         6         7
##  0.7392747 0.7392747 0.7392747 0.7392747 0.7392747 0.7392747 0.7392747
##          8
##  0.7392747
## 
##  Session:4 
##         1        2        3        4        5        6        7        8
##  0.760862 0.760862 0.760862 0.760862 0.760862 0.760862 0.760862 0.760862
## 
##  Session:5 
##          1         2         3         4         5         6         7
##  0.4373896 0.4373896 0.4373896 0.4373896 0.4373896 0.4373896 0.4373896
##          8
##  0.4373896
## 
##  Session:6 
##          1         2         3         4         5         6         7
##  0.4298178 0.4298178 0.4298178 0.4298178 0.4298178 0.4298178 0.4298178
##          8
##  0.4298178
## 
##  Session:7 
##          1         2         3         4         5         6         7
##  0.5094574 0.5094574 0.5094574 0.5094574 0.5094574 0.5094574 0.5094574
##          8
##  0.5094574
## 
##  Session:8 
##          1         2         3         4         5         6         7
##  0.2562359 0.2562359 0.2562359 0.2562359 0.2562359 0.2562359 0.2562359
##          8
##  0.2562359
## 
##  Session:9 
##          1         2         3         4         5         6         7
##  0.4856466 0.4856466 0.4856466 0.4856466 0.4856466 0.4856466 0.4856466
##          8
##  0.4856466
## 
##  Session:10 
##          1         2         3         4         5         6         7
##  0.4803881 0.4803881 0.4803881 0.4803881 0.4803881 0.4803881 0.4803881
##          8
##  0.4803881
# examine individula model results

model.number <-2

summary(model.fits[[model.number]])
## Output summary for RDOccupEG model
## Name : Psi(~1)Epsilon(~1)Gamma(~1)p(~session) 
## 
## Npar :  13
## -2lnL:  3566.397
## AICc :  3593.077
## 
## Beta
##                       estimate        se        lcl        ucl
## Psi:(Intercept)      1.4171968 0.3457931  0.7394424  2.0949512
## Epsilon:(Intercept) -0.9217753 0.1417699 -1.1996443 -0.6439063
## Gamma:(Intercept)   -1.1269845 0.1601751 -1.4409276 -0.8130413
## p:(Intercept)        0.0330090 0.1090620 -0.1807525  0.2467706
## p:session2          -1.1916082 0.1728642 -1.5304220 -0.8527944
## p:session3           1.0092192 0.1744336  0.6673293  1.3511090
## p:session4           1.1243693 0.2043931  0.7237588  1.5249798
## p:session5          -0.2825578 0.1725432 -0.6207426  0.0556269
## p:session6          -0.3061072 0.1701695 -0.6396395  0.0274251
## p:session7          -0.0019924 0.1893119 -0.3730439  0.3690590
## p:session8          -1.1188374 0.2294534 -1.5685660 -0.6691089
## p:session9          -0.0942170 0.1919391 -0.4704176  0.2819835
## p:session10         -0.1154180 0.1891406 -0.4861336  0.2552977
## 
## 
## Real Parameter Psi
##  
##          1
##  0.8048986
## 
## 
## Real Parameter Epsilon
##  
##          1         2         3         4         5         6         7
##  0.2845963 0.2845963 0.2845963 0.2845963 0.2845963 0.2845963 0.2845963
##          8         9
##  0.2845963 0.2845963
## 
## 
## Real Parameter Gamma
##  
##         1        2        3        4        5        6        7        8
##  0.244718 0.244718 0.244718 0.244718 0.244718 0.244718 0.244718 0.244718
##         9
##  0.244718
## 
## 
## Real Parameter p
##  Session:1 
##          1         2         3         4         5         6         7
##  0.5082515 0.5082515 0.5082515 0.5082515 0.5082515 0.5082515 0.5082515
##          8
##  0.5082515
## 
##  Session:2 
##          1         2         3         4         5         6         7
##  0.2389219 0.2389219 0.2389219 0.2389219 0.2389219 0.2389219 0.2389219
##          8
##  0.2389219
## 
##  Session:3 
##          1         2         3         4         5         6         7
##  0.7392797 0.7392797 0.7392797 0.7392797 0.7392797 0.7392797 0.7392797
##          8
##  0.7392797
## 
##  Session:4 
##         1        2        3        4        5        6        7        8
##  0.760856 0.760856 0.760856 0.760856 0.760856 0.760856 0.760856 0.760856
## 
##  Session:5 
##          1         2         3         4         5         6         7
##  0.4379346 0.4379346 0.4379346 0.4379346 0.4379346 0.4379346 0.4379346
##          8
##  0.4379346
## 
##  Session:6 
##          1         2         3         4         5         6         7
##  0.4321466 0.4321466 0.4321466 0.4321466 0.4321466 0.4321466 0.4321466
##          8
##  0.4321466
## 
##  Session:7 
##          1         2         3         4         5         6         7
##  0.5077535 0.5077535 0.5077535 0.5077535 0.5077535 0.5077535 0.5077535
##          8
##  0.5077535
## 
##  Session:8 
##          1         2         3         4         5         6         7
##  0.2524046 0.2524046 0.2524046 0.2524046 0.2524046 0.2524046 0.2524046
##          8
##  0.2524046
## 
##  Session:9 
##          1         2         3         4         5         6         7
##  0.4847028 0.4847028 0.4847028 0.4847028 0.4847028 0.4847028 0.4847028
##          8
##  0.4847028
## 
##  Session:10 
##          1         2         3         4         5         6         7
##  0.4794094 0.4794094 0.4794094 0.4794094 0.4794094 0.4794094 0.4794094
##          8
##  0.4794094
model.fits[[model.number]]$results$real
##                   estimate        se       lcl       ucl fixed    note
## Psi g1 a0 t1     0.8048986 0.0543023 0.6768739 0.8904115              
## Epsilon g1 a0 t1 0.2845963 0.0288645 0.2315385 0.3443641              
## Gamma g1 a0 t1   0.2447180 0.0296053 0.1914017 0.3072428              
## p g1 s1 t1       0.5082515 0.0272581 0.4549345 0.5613815              
## p g1 s2 t1       0.2389219 0.0244116 0.1943910 0.2899820              
## p g1 s3 t1       0.7392797 0.0262392 0.6846889 0.7873544              
## p g1 s4 t1       0.7608560 0.0314533 0.6939316 0.8170059              
## p g1 s5 t1       0.4379346 0.0329098 0.3748187 0.5031253              
## p g1 s6 t1       0.4321466 0.0320578 0.3707159 0.4957377              
## p g1 s7 t1       0.5077535 0.0386790 0.4323425 0.5828133              
## p g1 s8 t1       0.2524046 0.0381034 0.1851843 0.3340227              
## p g1 s9 t1       0.4847028 0.0394506 0.4083501 0.5617763              
## p g1 s10 t1      0.4794094 0.0385668 0.4048526 0.5548949
model.fits[[model.number]]$results$beta
##                       estimate        se        lcl        ucl
## Psi:(Intercept)      1.4171968 0.3457931  0.7394424  2.0949512
## Epsilon:(Intercept) -0.9217753 0.1417699 -1.1996443 -0.6439063
## Gamma:(Intercept)   -1.1269845 0.1601751 -1.4409276 -0.8130413
## p:(Intercept)        0.0330090 0.1090620 -0.1807525  0.2467706
## p:session2          -1.1916082 0.1728642 -1.5304220 -0.8527944
## p:session3           1.0092192 0.1744336  0.6673293  1.3511090
## p:session4           1.1243693 0.2043931  0.7237588  1.5249798
## p:session5          -0.2825578 0.1725432 -0.6207426  0.0556269
## p:session6          -0.3061072 0.1701695 -0.6396395  0.0274251
## p:session7          -0.0019924 0.1893119 -0.3730439  0.3690590
## p:session8          -1.1188374 0.2294534 -1.5685660 -0.6691089
## p:session9          -0.0942170 0.1919391 -0.4704176  0.2819835
## p:session10         -0.1154180 0.1891406 -0.4861336  0.2552977
model.fits[[model.number]]$results$derived
## $`psi Probability Occupied`
##     estimate         se       lcl       ucl
## 1  0.8048986 0.05430225 0.6984662 0.9113310
## 2  0.6235723 0.03478308 0.5553974 0.6917471
## 3  0.5382245 0.03348381 0.4725963 0.6038528
## 4  0.4980526 0.03482287 0.4297998 0.5663054
## 5  0.4791443 0.03607055 0.4084460 0.5498425
## 6  0.4702444 0.03690755 0.3979056 0.5425832
## 7  0.4660553 0.03740399 0.3927435 0.5393671
## 8  0.4640836 0.03767857 0.3902336 0.5379336
## 9  0.4631555 0.03782397 0.3890205 0.5372905
## 10 0.4627187 0.03789885 0.3884369 0.5370004
## 
## $`lambda Rate of Change`
##    estimate           se       lcl       ucl
## 1 0.7747215 0.0357469083 0.7046576 0.8447855
## 2 0.8631310 0.0253220195 0.8134999 0.9127622
## 3 0.9253621 0.0174611120 0.8911383 0.9595859
## 4 0.9620354 0.0114210969 0.9396501 0.9844208
## 5 0.9814254 0.0070037914 0.9676980 0.9951529
## 6 0.9910918 0.0040766966 0.9831014 0.9990821
## 7 0.9957693 0.0022864650 0.9912879 1.0002508
## 8 0.9980002 0.0012492620 0.9955517 1.0004488
## 9 0.9990568 0.0006696603 0.9977443 1.0003694
## 
## $`log odds lambda`
##    estimate          se       lcl       ucl
## 1 0.4015359 0.103297251 0.1990733 0.6039985
## 2 0.7036027 0.049225447 0.6071208 0.8000846
## 3 0.8513034 0.030703752 0.7911240 0.9114827
## 4 0.9271112 0.019809109 0.8882853 0.9659370
## 5 0.9649375 0.012223197 0.9409800 0.9888950
## 6 0.9833162 0.007183656 0.9692362 0.9973961
## 7 0.9921057 0.004065852 0.9841367 1.0000748
## 8 0.9962749 0.002238512 0.9918875 1.0006624
## 9 0.9982446 0.001207345 0.9958782 1.0006110
model.fits[[model.number]]$results$derived$"psi Probability Occupied"
##     estimate         se       lcl       ucl
## 1  0.8048986 0.05430225 0.6984662 0.9113310
## 2  0.6235723 0.03478308 0.5553974 0.6917471
## 3  0.5382245 0.03348381 0.4725963 0.6038528
## 4  0.4980526 0.03482287 0.4297998 0.5663054
## 5  0.4791443 0.03607055 0.4084460 0.5498425
## 6  0.4702444 0.03690755 0.3979056 0.5425832
## 7  0.4660553 0.03740399 0.3927435 0.5393671
## 8  0.4640836 0.03767857 0.3902336 0.5379336
## 9  0.4631555 0.03782397 0.3890205 0.5372905
## 10 0.4627187 0.03789885 0.3884369 0.5370004
model.fits[[model.number]]$results$derived$"lambda Rate of Change"
##    estimate           se       lcl       ucl
## 1 0.7747215 0.0357469083 0.7046576 0.8447855
## 2 0.8631310 0.0253220195 0.8134999 0.9127622
## 3 0.9253621 0.0174611120 0.8911383 0.9595859
## 4 0.9620354 0.0114210969 0.9396501 0.9844208
## 5 0.9814254 0.0070037914 0.9676980 0.9951529
## 6 0.9910918 0.0040766966 0.9831014 0.9990821
## 7 0.9957693 0.0022864650 0.9912879 1.0002508
## 8 0.9980002 0.0012492620 0.9955517 1.0004488
## 9 0.9990568 0.0006696603 0.9977443 1.0003694
model.fits[[model.number]]$results$derived$"log odds lambda"
##    estimate          se       lcl       ucl
## 1 0.4015359 0.103297251 0.1990733 0.6039985
## 2 0.7036027 0.049225447 0.6071208 0.8000846
## 3 0.8513034 0.030703752 0.7911240 0.9114827
## 4 0.9271112 0.019809109 0.8882853 0.9659370
## 5 0.9649375 0.012223197 0.9409800 0.9888950
## 6 0.9833162 0.007183656 0.9692362 0.9973961
## 7 0.9921057 0.004065852 0.9841367 1.0000748
## 8 0.9962749 0.002238512 0.9918875 1.0006624
## 9 0.9982446 0.001207345 0.9958782 1.0006110
get.real(model.fits[[model.number]], "Psi", se=TRUE)
##              all.diff.index par.index  estimate        se       lcl
## Psi g1 a0 t1              1         1 0.8048986 0.0543023 0.6768739
##                    ucl fixed    note group age time Age Time
## Psi g1 a0 t1 0.8904115                   1   0    1   0    0
get.real(model.fits[[model.number]], "p",    se=TRUE)
##             all.diff.index par.index  estimate        se       lcl
## p g1 s1 t1              20         4 0.5082515 0.0272581 0.4549345
## p g1 s1 t2              21         4 0.5082515 0.0272581 0.4549345
## p g1 s1 t3              22         4 0.5082515 0.0272581 0.4549345
## p g1 s1 t4              23         4 0.5082515 0.0272581 0.4549345
## p g1 s1 t5              24         4 0.5082515 0.0272581 0.4549345
## p g1 s1 t6              25         4 0.5082515 0.0272581 0.4549345
## p g1 s1 t7              26         4 0.5082515 0.0272581 0.4549345
## p g1 s1 t8              27         4 0.5082515 0.0272581 0.4549345
## p g1 s2 t1              28         5 0.2389219 0.0244116 0.1943910
## p g1 s2 t2              29         5 0.2389219 0.0244116 0.1943910
## p g1 s2 t3              30         5 0.2389219 0.0244116 0.1943910
## p g1 s2 t4              31         5 0.2389219 0.0244116 0.1943910
## p g1 s2 t5              32         5 0.2389219 0.0244116 0.1943910
## p g1 s2 t6              33         5 0.2389219 0.0244116 0.1943910
## p g1 s2 t7              34         5 0.2389219 0.0244116 0.1943910
## p g1 s2 t8              35         5 0.2389219 0.0244116 0.1943910
## p g1 s3 t1              36         6 0.7392797 0.0262392 0.6846889
## p g1 s3 t2              37         6 0.7392797 0.0262392 0.6846889
## p g1 s3 t3              38         6 0.7392797 0.0262392 0.6846889
## p g1 s3 t4              39         6 0.7392797 0.0262392 0.6846889
## p g1 s3 t5              40         6 0.7392797 0.0262392 0.6846889
## p g1 s3 t6              41         6 0.7392797 0.0262392 0.6846889
## p g1 s3 t7              42         6 0.7392797 0.0262392 0.6846889
## p g1 s3 t8              43         6 0.7392797 0.0262392 0.6846889
## p g1 s4 t1              44         7 0.7608560 0.0314533 0.6939316
## p g1 s4 t2              45         7 0.7608560 0.0314533 0.6939316
## p g1 s4 t3              46         7 0.7608560 0.0314533 0.6939316
## p g1 s4 t4              47         7 0.7608560 0.0314533 0.6939316
## p g1 s4 t5              48         7 0.7608560 0.0314533 0.6939316
## p g1 s4 t6              49         7 0.7608560 0.0314533 0.6939316
## p g1 s4 t7              50         7 0.7608560 0.0314533 0.6939316
## p g1 s4 t8              51         7 0.7608560 0.0314533 0.6939316
## p g1 s5 t1              52         8 0.4379346 0.0329098 0.3748187
## p g1 s5 t2              53         8 0.4379346 0.0329098 0.3748187
## p g1 s5 t3              54         8 0.4379346 0.0329098 0.3748187
## p g1 s5 t4              55         8 0.4379346 0.0329098 0.3748187
## p g1 s5 t5              56         8 0.4379346 0.0329098 0.3748187
## p g1 s5 t6              57         8 0.4379346 0.0329098 0.3748187
## p g1 s5 t7              58         8 0.4379346 0.0329098 0.3748187
## p g1 s5 t8              59         8 0.4379346 0.0329098 0.3748187
## p g1 s6 t1              60         9 0.4321466 0.0320578 0.3707159
## p g1 s6 t2              61         9 0.4321466 0.0320578 0.3707159
## p g1 s6 t3              62         9 0.4321466 0.0320578 0.3707159
## p g1 s6 t4              63         9 0.4321466 0.0320578 0.3707159
## p g1 s6 t5              64         9 0.4321466 0.0320578 0.3707159
## p g1 s6 t6              65         9 0.4321466 0.0320578 0.3707159
## p g1 s6 t7              66         9 0.4321466 0.0320578 0.3707159
## p g1 s6 t8              67         9 0.4321466 0.0320578 0.3707159
## p g1 s7 t1              68        10 0.5077535 0.0386790 0.4323425
## p g1 s7 t2              69        10 0.5077535 0.0386790 0.4323425
## p g1 s7 t3              70        10 0.5077535 0.0386790 0.4323425
## p g1 s7 t4              71        10 0.5077535 0.0386790 0.4323425
## p g1 s7 t5              72        10 0.5077535 0.0386790 0.4323425
## p g1 s7 t6              73        10 0.5077535 0.0386790 0.4323425
## p g1 s7 t7              74        10 0.5077535 0.0386790 0.4323425
## p g1 s7 t8              75        10 0.5077535 0.0386790 0.4323425
## p g1 s8 t1              76        11 0.2524046 0.0381034 0.1851843
## p g1 s8 t2              77        11 0.2524046 0.0381034 0.1851843
## p g1 s8 t3              78        11 0.2524046 0.0381034 0.1851843
## p g1 s8 t4              79        11 0.2524046 0.0381034 0.1851843
## p g1 s8 t5              80        11 0.2524046 0.0381034 0.1851843
## p g1 s8 t6              81        11 0.2524046 0.0381034 0.1851843
## p g1 s8 t7              82        11 0.2524046 0.0381034 0.1851843
## p g1 s8 t8              83        11 0.2524046 0.0381034 0.1851843
## p g1 s9 t1              84        12 0.4847028 0.0394506 0.4083501
## p g1 s9 t2              85        12 0.4847028 0.0394506 0.4083501
## p g1 s9 t3              86        12 0.4847028 0.0394506 0.4083501
## p g1 s9 t4              87        12 0.4847028 0.0394506 0.4083501
## p g1 s9 t5              88        12 0.4847028 0.0394506 0.4083501
## p g1 s9 t6              89        12 0.4847028 0.0394506 0.4083501
## p g1 s9 t7              90        12 0.4847028 0.0394506 0.4083501
## p g1 s9 t8              91        12 0.4847028 0.0394506 0.4083501
## p g1 s10 t1             92        13 0.4794094 0.0385668 0.4048526
## p g1 s10 t2             93        13 0.4794094 0.0385668 0.4048526
## p g1 s10 t3             94        13 0.4794094 0.0385668 0.4048526
## p g1 s10 t4             95        13 0.4794094 0.0385668 0.4048526
## p g1 s10 t5             96        13 0.4794094 0.0385668 0.4048526
## p g1 s10 t6             97        13 0.4794094 0.0385668 0.4048526
## p g1 s10 t7             98        13 0.4794094 0.0385668 0.4048526
## p g1 s10 t8             99        13 0.4794094 0.0385668 0.4048526
##                   ucl fixed    note group time session Time
## p g1 s1 t1  0.5613815                   1    1       1    0
## p g1 s1 t2  0.5613815                   1    2       1    1
## p g1 s1 t3  0.5613815                   1    3       1    2
## p g1 s1 t4  0.5613815                   1    4       1    3
## p g1 s1 t5  0.5613815                   1    5       1    4
## p g1 s1 t6  0.5613815                   1    6       1    5
## p g1 s1 t7  0.5613815                   1    7       1    6
## p g1 s1 t8  0.5613815                   1    8       1    7
## p g1 s2 t1  0.2899820                   1    1       2    0
## p g1 s2 t2  0.2899820                   1    2       2    1
## p g1 s2 t3  0.2899820                   1    3       2    2
## p g1 s2 t4  0.2899820                   1    4       2    3
## p g1 s2 t5  0.2899820                   1    5       2    4
## p g1 s2 t6  0.2899820                   1    6       2    5
## p g1 s2 t7  0.2899820                   1    7       2    6
## p g1 s2 t8  0.2899820                   1    8       2    7
## p g1 s3 t1  0.7873544                   1    1       3    0
## p g1 s3 t2  0.7873544                   1    2       3    1
## p g1 s3 t3  0.7873544                   1    3       3    2
## p g1 s3 t4  0.7873544                   1    4       3    3
## p g1 s3 t5  0.7873544                   1    5       3    4
## p g1 s3 t6  0.7873544                   1    6       3    5
## p g1 s3 t7  0.7873544                   1    7       3    6
## p g1 s3 t8  0.7873544                   1    8       3    7
## p g1 s4 t1  0.8170059                   1    1       4    0
## p g1 s4 t2  0.8170059                   1    2       4    1
## p g1 s4 t3  0.8170059                   1    3       4    2
## p g1 s4 t4  0.8170059                   1    4       4    3
## p g1 s4 t5  0.8170059                   1    5       4    4
## p g1 s4 t6  0.8170059                   1    6       4    5
## p g1 s4 t7  0.8170059                   1    7       4    6
## p g1 s4 t8  0.8170059                   1    8       4    7
## p g1 s5 t1  0.5031253                   1    1       5    0
## p g1 s5 t2  0.5031253                   1    2       5    1
## p g1 s5 t3  0.5031253                   1    3       5    2
## p g1 s5 t4  0.5031253                   1    4       5    3
## p g1 s5 t5  0.5031253                   1    5       5    4
## p g1 s5 t6  0.5031253                   1    6       5    5
## p g1 s5 t7  0.5031253                   1    7       5    6
## p g1 s5 t8  0.5031253                   1    8       5    7
## p g1 s6 t1  0.4957377                   1    1       6    0
## p g1 s6 t2  0.4957377                   1    2       6    1
## p g1 s6 t3  0.4957377                   1    3       6    2
## p g1 s6 t4  0.4957377                   1    4       6    3
## p g1 s6 t5  0.4957377                   1    5       6    4
## p g1 s6 t6  0.4957377                   1    6       6    5
## p g1 s6 t7  0.4957377                   1    7       6    6
## p g1 s6 t8  0.4957377                   1    8       6    7
## p g1 s7 t1  0.5828133                   1    1       7    0
## p g1 s7 t2  0.5828133                   1    2       7    1
## p g1 s7 t3  0.5828133                   1    3       7    2
## p g1 s7 t4  0.5828133                   1    4       7    3
## p g1 s7 t5  0.5828133                   1    5       7    4
## p g1 s7 t6  0.5828133                   1    6       7    5
## p g1 s7 t7  0.5828133                   1    7       7    6
## p g1 s7 t8  0.5828133                   1    8       7    7
## p g1 s8 t1  0.3340227                   1    1       8    0
## p g1 s8 t2  0.3340227                   1    2       8    1
## p g1 s8 t3  0.3340227                   1    3       8    2
## p g1 s8 t4  0.3340227                   1    4       8    3
## p g1 s8 t5  0.3340227                   1    5       8    4
## p g1 s8 t6  0.3340227                   1    6       8    5
## p g1 s8 t7  0.3340227                   1    7       8    6
## p g1 s8 t8  0.3340227                   1    8       8    7
## p g1 s9 t1  0.5617763                   1    1       9    0
## p g1 s9 t2  0.5617763                   1    2       9    1
## p g1 s9 t3  0.5617763                   1    3       9    2
## p g1 s9 t4  0.5617763                   1    4       9    3
## p g1 s9 t5  0.5617763                   1    5       9    4
## p g1 s9 t6  0.5617763                   1    6       9    5
## p g1 s9 t7  0.5617763                   1    7       9    6
## p g1 s9 t8  0.5617763                   1    8       9    7
## p g1 s10 t1 0.5548949                   1    1      10    0
## p g1 s10 t2 0.5548949                   1    2      10    1
## p g1 s10 t3 0.5548949                   1    3      10    2
## p g1 s10 t4 0.5548949                   1    4      10    3
## p g1 s10 t5 0.5548949                   1    5      10    4
## p g1 s10 t6 0.5548949                   1    6      10    5
## p g1 s10 t7 0.5548949                   1    7      10    6
## p g1 s10 t8 0.5548949                   1    8      10    7
# collect models and make AICc table
model.set <- RMark::collect.models( type=NULL)
model.set
##                                          model npar     AICc  DeltaAICc
## 2       Psi(~1)Epsilon(~1)Gamma(~1)p(~session)   13 3593.077   0.000000
## 3 Psi(~1)Epsilon(~time)Gamma(~time)p(~session)   29 3595.340   2.263749
## 1             Psi(~1)Epsilon(~1)Gamma(~1)p(~1)    4 3818.972 225.895790
##      weight Deviance
## 2 0.7561847 3125.591
## 3 0.2438153 3093.187
## 1 0.0000000 3370.092
# model averaging in the usual way
RMark::model.average(model.set, "Psi")
##              par.index  estimate         se fixed    note group age time
## Psi g1 a0 t1         1 0.8043583 0.05426861                   1   0    1
##              Age Time
## Psi g1 a0 t1   0    0
RMark::model.average(model.set, "p")
##             par.index  estimate         se fixed    note group time
## p g1 s1 t1         20 0.5085936 0.02719706                   1    1
## p g1 s1 t2         21 0.5085936 0.02719706                   1    2
## p g1 s1 t3         22 0.5085936 0.02719706                   1    3
## p g1 s1 t4         23 0.5085936 0.02719706                   1    4
## p g1 s1 t5         24 0.5085936 0.02719706                   1    5
## p g1 s1 t6         25 0.5085936 0.02719706                   1    6
## p g1 s1 t7         26 0.5085936 0.02719706                   1    7
## p g1 s1 t8         27 0.5085936 0.02719706                   1    8
## p g1 s2 t1         28 0.2339447 0.02610728                   1    1
## p g1 s2 t2         29 0.2339447 0.02610728                   1    2
## p g1 s2 t3         30 0.2339447 0.02610728                   1    3
## p g1 s2 t4         31 0.2339447 0.02610728                   1    4
## p g1 s2 t5         32 0.2339447 0.02610728                   1    5
## p g1 s2 t6         33 0.2339447 0.02610728                   1    6
## p g1 s2 t7         34 0.2339447 0.02610728                   1    7
## p g1 s2 t8         35 0.2339447 0.02610728                   1    8
## p g1 s3 t1         36 0.7392785 0.02623974                   1    1
## p g1 s3 t2         37 0.7392785 0.02623974                   1    2
## p g1 s3 t3         38 0.7392785 0.02623974                   1    3
## p g1 s3 t4         39 0.7392785 0.02623974                   1    4
## p g1 s3 t5         40 0.7392785 0.02623974                   1    5
## p g1 s3 t6         41 0.7392785 0.02623974                   1    6
## p g1 s3 t7         42 0.7392785 0.02623974                   1    7
## p g1 s3 t8         43 0.7392785 0.02623974                   1    8
## p g1 s4 t1         44 0.7608575 0.03145255                   1    1
## p g1 s4 t2         45 0.7608575 0.03145255                   1    2
## p g1 s4 t3         46 0.7608575 0.03145255                   1    3
## p g1 s4 t4         47 0.7608575 0.03145255                   1    4
## p g1 s4 t5         48 0.7608575 0.03145255                   1    5
## p g1 s4 t6         49 0.7608575 0.03145255                   1    6
## p g1 s4 t7         50 0.7608575 0.03145255                   1    7
## p g1 s4 t8         51 0.7608575 0.03145255                   1    8
## p g1 s5 t1         52 0.4378017 0.03293816                   1    1
## p g1 s5 t2         53 0.4378017 0.03293816                   1    2
## p g1 s5 t3         54 0.4378017 0.03293816                   1    3
## p g1 s5 t4         55 0.4378017 0.03293816                   1    4
## p g1 s5 t5         56 0.4378017 0.03293816                   1    5
## p g1 s5 t6         57 0.4378017 0.03293816                   1    6
## p g1 s5 t7         58 0.4378017 0.03293816                   1    7
## p g1 s5 t8         59 0.4378017 0.03293816                   1    8
## p g1 s6 t1         60 0.4315789 0.03219185                   1    1
## p g1 s6 t2         61 0.4315789 0.03219185                   1    2
## p g1 s6 t3         62 0.4315789 0.03219185                   1    3
## p g1 s6 t4         63 0.4315789 0.03219185                   1    4
## p g1 s6 t5         64 0.4315789 0.03219185                   1    5
## p g1 s6 t6         65 0.4315789 0.03219185                   1    6
## p g1 s6 t7         66 0.4315789 0.03219185                   1    7
## p g1 s6 t8         67 0.4315789 0.03219185                   1    8
## p g1 s7 t1         68 0.5081690 0.03857226                   1    1
## p g1 s7 t2         69 0.5081690 0.03857226                   1    2
## p g1 s7 t3         70 0.5081690 0.03857226                   1    3
## p g1 s7 t4         71 0.5081690 0.03857226                   1    4
## p g1 s7 t5         72 0.5081690 0.03857226                   1    5
## p g1 s7 t6         73 0.5081690 0.03857226                   1    6
## p g1 s7 t7         74 0.5081690 0.03857226                   1    7
## p g1 s7 t8         75 0.5081690 0.03857226                   1    8
## p g1 s8 t1         76 0.2533388 0.03890318                   1    1
## p g1 s8 t2         77 0.2533388 0.03890318                   1    2
## p g1 s8 t3         78 0.2533388 0.03890318                   1    3
## p g1 s8 t4         79 0.2533388 0.03890318                   1    4
## p g1 s8 t5         80 0.2533388 0.03890318                   1    5
## p g1 s8 t6         81 0.2533388 0.03890318                   1    6
## p g1 s8 t7         82 0.2533388 0.03890318                   1    7
## p g1 s8 t8         83 0.2533388 0.03890318                   1    8
## p g1 s9 t1         84 0.4849329 0.03939556                   1    1
## p g1 s9 t2         85 0.4849329 0.03939556                   1    2
## p g1 s9 t3         86 0.4849329 0.03939556                   1    3
## p g1 s9 t4         87 0.4849329 0.03939556                   1    4
## p g1 s9 t5         88 0.4849329 0.03939556                   1    5
## p g1 s9 t6         89 0.4849329 0.03939556                   1    6
## p g1 s9 t7         90 0.4849329 0.03939556                   1    7
## p g1 s9 t8         91 0.4849329 0.03939556                   1    8
## p g1 s10 t1        92 0.4796480 0.03851016                   1    1
## p g1 s10 t2        93 0.4796480 0.03851016                   1    2
## p g1 s10 t3        94 0.4796480 0.03851016                   1    3
## p g1 s10 t4        95 0.4796480 0.03851016                   1    4
## p g1 s10 t5        96 0.4796480 0.03851016                   1    5
## p g1 s10 t6        97 0.4796480 0.03851016                   1    6
## p g1 s10 t7        98 0.4796480 0.03851016                   1    7
## p g1 s10 t8        99 0.4796480 0.03851016                   1    8
##             session Time
## p g1 s1 t1        1    0
## p g1 s1 t2        1    1
## p g1 s1 t3        1    2
## p g1 s1 t4        1    3
## p g1 s1 t5        1    4
## p g1 s1 t6        1    5
## p g1 s1 t7        1    6
## p g1 s1 t8        1    7
## p g1 s2 t1        2    0
## p g1 s2 t2        2    1
## p g1 s2 t3        2    2
## p g1 s2 t4        2    3
## p g1 s2 t5        2    4
## p g1 s2 t6        2    5
## p g1 s2 t7        2    6
## p g1 s2 t8        2    7
## p g1 s3 t1        3    0
## p g1 s3 t2        3    1
## p g1 s3 t3        3    2
## p g1 s3 t4        3    3
## p g1 s3 t5        3    4
## p g1 s3 t6        3    5
## p g1 s3 t7        3    6
## p g1 s3 t8        3    7
## p g1 s4 t1        4    0
## p g1 s4 t2        4    1
## p g1 s4 t3        4    2
## p g1 s4 t4        4    3
## p g1 s4 t5        4    4
## p g1 s4 t6        4    5
## p g1 s4 t7        4    6
## p g1 s4 t8        4    7
## p g1 s5 t1        5    0
## p g1 s5 t2        5    1
## p g1 s5 t3        5    2
## p g1 s5 t4        5    3
## p g1 s5 t5        5    4
## p g1 s5 t6        5    5
## p g1 s5 t7        5    6
## p g1 s5 t8        5    7
## p g1 s6 t1        6    0
## p g1 s6 t2        6    1
## p g1 s6 t3        6    2
## p g1 s6 t4        6    3
## p g1 s6 t5        6    4
## p g1 s6 t6        6    5
## p g1 s6 t7        6    6
## p g1 s6 t8        6    7
## p g1 s7 t1        7    0
## p g1 s7 t2        7    1
## p g1 s7 t3        7    2
## p g1 s7 t4        7    3
## p g1 s7 t5        7    4
## p g1 s7 t6        7    5
## p g1 s7 t7        7    6
## p g1 s7 t8        7    7
## p g1 s8 t1        8    0
## p g1 s8 t2        8    1
## p g1 s8 t3        8    2
## p g1 s8 t4        8    3
## p g1 s8 t5        8    4
## p g1 s8 t6        8    5
## p g1 s8 t7        8    6
## p g1 s8 t8        8    7
## p g1 s9 t1        9    0
## p g1 s9 t2        9    1
## p g1 s9 t3        9    2
## p g1 s9 t4        9    3
## p g1 s9 t5        9    4
## p g1 s9 t6        9    5
## p g1 s9 t7        9    6
## p g1 s9 t8        9    7
## p g1 s10 t1      10    0
## p g1 s10 t2      10    1
## p g1 s10 t3      10    2
## p g1 s10 t4      10    3
## p g1 s10 t5      10    4
## p g1 s10 t6      10    5
## p g1 s10 t7      10    6
## p g1 s10 t8      10    7
# Model average the derived parameters
# Because RMarks stores psi in different places, we standarize the dervied parameters.
# We need to do this here because collect.models re-extracts the output from MARK and wipes anything else
model.set[-length(model.set)] <- plyr::llply(model.set[-length(model.set)], function(x){RMark.add.derived(x)})
# NOTE: Because a group was used in the process.data step above, the first half
# of each derived parameter table will be for Prox=No, and the second
# will be for Prox = Yes
model.set[[1]]$results$derived
## $`psi Probability Occupied`
##     estimate         se       lcl       ucl
## 1  0.8064294 0.05436625 0.6998716 0.9129873
## 2  0.6111334 0.03374706 0.5449892 0.6772776
## 3  0.5245324 0.03247428 0.4608828 0.5881820
## 4  0.4861306 0.03377543 0.4199307 0.5523304
## 5  0.4691018 0.03492109 0.4006565 0.5375472
## 6  0.4615507 0.03564158 0.3916932 0.5314082
## 7  0.4582023 0.03604050 0.3875629 0.5288417
## 8  0.4567175 0.03624646 0.3856744 0.5277606
## 9  0.4560591 0.03634844 0.3848161 0.5273020
## 10 0.4557671 0.03639766 0.3844277 0.5271065
## 
## $`lambda Rate of Change`
##    estimate           se       lcl       ucl
## 1 0.7578263 0.0361205511 0.6870300 0.8286226
## 2 0.8582945 0.0254302233 0.8084512 0.9081377
## 3 0.9267884 0.0170986289 0.8932751 0.9603017
## 4 0.9649709 0.0106762572 0.9440455 0.9858964
## 5 0.9839030 0.0061833101 0.9717837 0.9960223
## 6 0.9927453 0.0033886004 0.9861036 0.9993869
## 7 0.9967595 0.0017887345 0.9932536 1.0002654
## 8 0.9985584 0.0009200834 0.9967550 1.0003617
## 9 0.9993598 0.0004644587 0.9984495 1.0002702
## 
## $`log odds lambda`
##    estimate           se       lcl       ucl
## 1 0.3772319 0.1003416557 0.1805622 0.5739015
## 2 0.7019659 0.0478415780 0.6081964 0.7957354
## 3 0.8575288 0.0295032549 0.7997024 0.9153552
## 4 0.9340192 0.0182909121 0.8981690 0.9698694
## 5 0.9701050 0.0106865935 0.9491592 0.9910507
## 6 0.9866099 0.0059184067 0.9750098 0.9982100
## 7 0.9940353 0.0031530440 0.9878554 1.0002153
## 8 0.9973497 0.0016339140 0.9941472 1.0005521
## 9 0.9988237 0.0008295864 0.9971977 1.0004497
## 
## $all_psi
##     estimate         se       lcl       ucl
## 1  0.8064294 0.05436625 0.6998716 0.9129873
## 2  0.6111334 0.03374706 0.5449892 0.6772776
## 3  0.5245324 0.03247428 0.4608828 0.5881820
## 4  0.4861306 0.03377543 0.4199307 0.5523304
## 5  0.4691018 0.03492109 0.4006565 0.5375472
## 6  0.4615507 0.03564158 0.3916932 0.5314082
## 7  0.4582023 0.03604050 0.3875629 0.5288417
## 8  0.4567175 0.03624646 0.3856744 0.5277606
## 9  0.4560591 0.03634844 0.3848161 0.5273020
## 10 0.4557671 0.03639766 0.3844277 0.5271065
RMark.model.average.derived(model.set, "all_psi")
## Loading required package: plyr
## Loading required package: boot
##     estimate         se       lcl       ucl
## 1  0.8043583 0.05426861 0.6765265 0.8898946
## 2  0.6794870 0.10874275 0.4434377 0.8494191
## 3  0.5621561 0.06041388 0.4424676 0.6750219
## 4  0.4785788 0.05631776 0.3709666 0.5882166
## 5  0.4915453 0.05077127 0.3936548 0.5900885
## 6  0.4948277 0.06345185 0.3732741 0.6169959
## 7  0.4503140 0.05383814 0.3484874 0.5564806
## 8  0.4460846 0.05884892 0.3355256 0.5622482
## 9  0.4437925 0.05746169 0.3358059 0.5573646
## 10 0.4479471 0.05327823 0.3472296 0.5531241
RMark.model.average.derived(model.set, "lambda Rate of Change")
##    estimate         se       lcl       ucl
## 1 0.8449029 0.13678674 0.5768058 1.1129999
## 2 0.8346043 0.06809584 0.7011389 0.9680697
## 3 0.8599617 0.12379990 0.6173183 1.1026050
## 4 1.0364892 0.15236857 0.7378523 1.3351261
## 5 1.0048453 0.07857538 0.8508404 1.1588502
## 6 0.9208624 0.13658238 0.6531659 1.1885589
## 7 0.9899801 0.09920378 0.7955443 1.1844159
## 8 0.9944131 0.09360450 0.8109516 1.1778745
## 9 1.0109739 0.10702913 0.8012007 1.2207472
RMark.model.average.derived(model.set, "log odds lambda")
##    estimate        se        lcl       ucl
## 1 0.6511369 0.6119301 -0.5482242 1.8504979
## 2 0.6056451 0.1954195  0.2226299 0.9886603
## 3 0.7438725 0.1981265  0.3555517 1.1321933
## 4 1.0836015 0.3275662  0.4415836 1.7256195
## 5 1.0175283 0.1870411  0.6509344 1.3841222
## 6 0.8664133 0.2204494  0.4343405 1.2984862
## 7 0.9828441 0.1608442  0.6675953 1.2980929
## 8 0.9905711 0.1512557  0.6941153 1.2870269
## 9 1.0182207 0.1815792  0.6623321 1.3741094
# model averaging of derived parameters such as the occupancy at each time step
psi.ma <- RMark.model.average.derived(model.set, "all_psi")
psi.ma$Year <- 1:nrow(psi.ma)
psi.ma$parameter <- 'psi'
psi.ma
##     estimate         se       lcl       ucl Year parameter
## 1  0.8043583 0.05426861 0.6765265 0.8898946    1       psi
## 2  0.6794870 0.10874275 0.4434377 0.8494191    2       psi
## 3  0.5621561 0.06041388 0.4424676 0.6750219    3       psi
## 4  0.4785788 0.05631776 0.3709666 0.5882166    4       psi
## 5  0.4915453 0.05077127 0.3936548 0.5900885    5       psi
## 6  0.4948277 0.06345185 0.3732741 0.6169959    6       psi
## 7  0.4503140 0.05383814 0.3484874 0.5564806    7       psi
## 8  0.4460846 0.05884892 0.3355256 0.5622482    8       psi
## 9  0.4437925 0.05746169 0.3358059 0.5573646    9       psi
## 10 0.4479471 0.05327823 0.3472296 0.5531241   10       psi
# likely more interested in colonization and extinction probabilities
epsilon.ma <- RMark::model.average(model.set, "Epsilon", vcv=TRUE)$estimates
epsilon.ma$Year <- 1:nrow(epsilon.ma)
epsilon.ma$parameter <- 'epsilon'
epsilon.ma
##                  par.index  estimate         se        lcl       ucl fixed
## Epsilon g1 a0 t1         2 0.2372183 0.09315391 0.10183381 0.4603413      
## Epsilon g1 a1 t2         3 0.2815135 0.04278359 0.20561773 0.3722941      
## Epsilon g1 a2 t3         4 0.3057664 0.06038582 0.20140406 0.4347660      
## Epsilon g1 a3 t4         5 0.2357252 0.09426047 0.09959533 0.4623731      
## Epsilon g1 a4 t5         6 0.2633361 0.05892969 0.16464131 0.3933364      
## Epsilon g1 a5 t6         7 0.3244626 0.08672015 0.18111833 0.5105265      
## Epsilon g1 a6 t7         8 0.3054912 0.07683739 0.17783324 0.4721612      
## Epsilon g1 a7 t8         9 0.2889095 0.05813098 0.18919153 0.4143285      
## Epsilon g1 a8 t9        10 0.3189298 0.08461770 0.17913514 0.5012072      
##                     note group age time Age Time Year parameter
## Epsilon g1 a0 t1             1   0    1   0    0    1   epsilon
## Epsilon g1 a1 t2             1   1    2   1    1    2   epsilon
## Epsilon g1 a2 t3             1   2    3   2    2    3   epsilon
## Epsilon g1 a3 t4             1   3    4   3    3    4   epsilon
## Epsilon g1 a4 t5             1   4    5   4    4    5   epsilon
## Epsilon g1 a5 t6             1   5    6   5    5    6   epsilon
## Epsilon g1 a6 t7             1   6    7   6    6    7   epsilon
## Epsilon g1 a7 t8             1   7    8   7    7    8   epsilon
## Epsilon g1 a8 t9             1   8    9   8    8    9   epsilon
gamma.ma <- RMark::model.average(model.set, "Gamma", vcv=TRUE)$estimates
gamma.ma$Year <- 1:nrow(gamma.ma)
gamma.ma$parameter <- 'gamma'
gamma.ma
##                par.index  estimate         se        lcl       ucl fixed
## Gamma g1 a0 t1        11 0.3366328 0.18541180 0.09065496 0.7209124      
## Gamma g1 a1 t2        12 0.2106212 0.14013238 0.04865404 0.5819475      
## Gamma g1 a2 t3        13 0.1972404 0.09073580 0.07400049 0.4303404      
## Gamma g1 a3 t4        14 0.2466579 0.04619805 0.16745076 0.3476851      
## Gamma g1 a4 t5        15 0.2606273 0.05925787 0.16172837 0.3917416      
## Gamma g1 a5 t6        16 0.2341233 0.05251326 0.14689357 0.3517921      
## Gamma g1 a6 t7        17 0.2410422 0.04683228 0.16128216 0.3440653      
## Gamma g1 a7 t8        18 0.2296177 0.05348732 0.14147339 0.3502738      
## Gamma g1 a8 t9        19 0.2569172 0.05136910 0.16946425 0.3694264      
##                   note group age time Age Time Year parameter
## Gamma g1 a0 t1             1   0    1   0    0    1     gamma
## Gamma g1 a1 t2             1   1    2   1    1    2     gamma
## Gamma g1 a2 t3             1   2    3   2    2    3     gamma
## Gamma g1 a3 t4             1   3    4   3    3    4     gamma
## Gamma g1 a4 t5             1   4    5   4    4    5     gamma
## Gamma g1 a5 t6             1   5    6   5    5    6     gamma
## Gamma g1 a6 t7             1   6    7   6    6    7     gamma
## Gamma g1 a7 t8             1   7    8   7    7    8     gamma
## Gamma g1 a8 t9             1   8    9   8    8    9     gamma
all.est <- plyr::rbind.fill(psi.ma, epsilon.ma, gamma.ma)

ggplot(data=all.est, aes(x=Year,y=estimate, color=parameter))+
  ggtitle("Estimated occupancy, extinction, colonization, over time")+
  geom_point(position=position_dodge(w=0.2))+
  geom_line(position=position_dodge(w=0.2))+
  ylim(0,1)+
  geom_errorbar(aes(ymin=lcl, ymax=ucl), width=.1,position=position_dodge(w=0.2))+
  scale_x_continuous(breaks=1:10)

cleanup(ask=FALSE)