# Sunfish
# Redbreast sunfish occupancy of streams segments over 8 seasons = 4 years * summer*spring
#3 quadrats were sampled per segment via electrofishing total 24 sampling occasions
#15 covariates: LN(link magnitude) and standardized Q (streamflow) for the sampling intervals;
#minimum discharge for intervals 1-7, maximum discharge intervals 1-7
  
# Fitting several models using the RPresence Package
#Single Species Multiple Seasons
library(readxl)
library(RPresence)
## Warning: package 'RPresence' was built under R version 3.5.0
library(ggplot2)

# Get the RPResence additional functions 
source(file.path("..","..","..","AdditionalFunctions","Rpresence.additional.functions.R"))

# get the data read in
# Data for detections should be a data frame with rows corresponding to sites
# and columns to visits.
# The usual 1=detected; 0=not detected; NA=not visited is used.

input.data <- readxl::read_excel(file.path("..","sunfish.xls"), 
                                 skip=1, col_names=TRUE)#No NAs in this data set, make sure to use "na =" statement if there are
head(input.data)
## # A tibble: 6 x 39
##     S11   S12   S13   S21   S22   S23   S31   S32   S33   S41   S42   S43
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  1.00  0     1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00
## 2  0     1.00  1.00  1.00  0     1.00  0     0     0     0     1.00  0   
## 3  0     0     0     1.00  1.00  1.00  0     0     0     1.00  1.00  1.00
## 4  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00
## 5  1.00  1.00  1.00  0     0     0     1.00  1.00  1.00  0     0     0   
## 6  1.00  1.00  1.00  0     0     0     0     0     0     1.00  1.00  0   
## # ... with 27 more variables: S51 <dbl>, S52 <dbl>, S53 <dbl>, S61 <dbl>,
## #   S62 <dbl>, S63 <dbl>, S71 <dbl>, S72 <dbl>, S73 <dbl>, S81 <dbl>, S82
## #   <dbl>, S83 <dbl>, LN <dbl>, minQ1 <dbl>, minQ2 <dbl>, minQ3 <dbl>,
## #   minQ4 <dbl>, minQ5 <dbl>, minQ6 <dbl>, minQ7 <dbl>, maxQ1 <dbl>, maxQ2
## #   <dbl>, maxQ3 <dbl>, maxQ4 <dbl>, maxQ5 <dbl>, maxQ6 <dbl>, maxQ7 <dbl>
input.history <- input.data[, 1:24]
head(input.history)
## # A tibble: 6 x 24
##     S11   S12   S13   S21   S22   S23   S31   S32   S33   S41   S42   S43
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1  1.00  0     1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00
## 2  0     1.00  1.00  1.00  0     1.00  0     0     0     0     1.00  0   
## 3  0     0     0     1.00  1.00  1.00  0     0     0     1.00  1.00  1.00
## 4  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00
## 5  1.00  1.00  1.00  0     0     0     1.00  1.00  1.00  0     0     0   
## 6  1.00  1.00  1.00  0     0     0     0     0     0     1.00  1.00  0   
## # ... with 12 more variables: S51 <dbl>, S52 <dbl>, S53 <dbl>, S61 <dbl>,
## #   S62 <dbl>, S63 <dbl>, S71 <dbl>, S72 <dbl>, S73 <dbl>, S81 <dbl>, S82
## #   <dbl>, S83 <dbl>
# do some basic checks on your data 
# e.g. check number of sites; number of visits etc
nrow(input.history)
## [1] 26
ncol(input.history)
## [1] 24
range(input.history, na.rm=TRUE)
## [1] 0 1
sum(is.na(input.history))
## [1] 0
#Create data frame of site covariates
site.cov <- data.frame(Site=1:nrow(input.data), input.data[,25])
head(site.cov)
##   Site   LN
## 1    1 1.32
## 2    2 4.97
## 3    3 1.02
## 4    4 2.20
## 5    5 2.89
## 6    6 2.87
#Create data frame of survey covariates
minQ.data = input.data[,26:32]
minQ.data = cbind(minQ.data,rep(NA,nrow(minQ.data)))
names(minQ.data)[8] = "minQ8"
head(minQ.data)
##   minQ1 minQ2 minQ3 minQ4 minQ5 minQ6 minQ7 minQ8
## 1  0.61  0.16  0.64  0.92  1.00  0.10  0.27    NA
## 2  0.45  0.06  0.93  0.34  0.20  0.67  0.77    NA
## 3  0.12  0.21  0.03  0.26  0.99  0.81  0.47    NA
## 4  0.32  0.57  0.67  0.37  0.40  0.87  0.30    NA
## 5  0.22  0.85  0.02  0.78  0.47  0.43  0.45    NA
## 6  0.55  0.42  0.45  0.99  0.85  0.50  0.64    NA
maxQ.data = input.data[,33:39]
maxQ.data = cbind(maxQ.data,rep(NA,nrow(maxQ.data)))
names(maxQ.data)[8] = "maxQ8"
head(maxQ.data)
##   maxQ1 maxQ2 maxQ3 maxQ4 maxQ5 maxQ6 maxQ7 maxQ8
## 1  5.59  7.58  7.03  1.22  6.73  4.77  1.87    NA
## 2  6.63  1.47  3.49  3.36  2.64  3.21  0.86    NA
## 3  3.19  6.73  6.35  1.46  4.71  1.32  1.01    NA
## 4  6.40  5.92  2.39  0.81  5.06  5.05  5.63    NA
## 5  6.36  6.87  4.86  7.44  5.63  4.13  7.58    NA
## 6  4.97  1.53  3.12  2.14  0.91  1.07  2.70    NA
# Create survey covariate table. You need to stack the data by columns
survey.cov <- data.frame(Site=1:nrow(minQ.data),
                         Visit=as.factor(rep(1:ncol(minQ.data), each=nrow(minQ.data))),
                         minQ =unlist(minQ.data),
                         maxQ =unlist(maxQ.data),
                         stringsAsFactors=FALSE)

head(survey.cov)
##        Site Visit minQ maxQ
## minQ11    1     1 0.61 5.59
## minQ12    2     1 0.45 6.63
## minQ13    3     1 0.12 3.19
## minQ14    4     1 0.32 6.40
## minQ15    5     1 0.22 6.36
## minQ16    6     1 0.55 4.97
# Eight seasons with 3 visits. Don't need same number of visits/season
Nvisits.per.season  <- rep(3,8) # 8 seasons with 3 visits. Don't need same number of visits/season

# Create the *.pao file
sunfish.pao <- RPresence::createPao(input.history,
                                  unitcov=site.cov,
                                  survcov=survey.cov,
                                  nsurveyseason=Nvisits.per.season,
                                  title='sunfish SSMS')
## Warning in data.frame(survcov, srvcov): row names were found from a short
## variable and have been discarded
sunfish.pao
## $nunits
## [1] 26
## 
## $nsurveys
## [1] 24
## 
## $nseasons
## [1] 8
## 
## $nmethods
## [1] 1
## 
## $det.data
## # A tibble: 26 x 24
##      S11   S12   S13   S21   S22   S23   S31   S32   S33   S41   S42   S43
##    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##  1  1.00  0     1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00
##  2  0     1.00  1.00  1.00  0     1.00  0     0     0     0     1.00  0   
##  3  0     0     0     1.00  1.00  1.00  0     0     0     1.00  1.00  1.00
##  4  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00
##  5  1.00  1.00  1.00  0     0     0     1.00  1.00  1.00  0     0     0   
##  6  1.00  1.00  1.00  0     0     0     0     0     0     1.00  1.00  0   
##  7  0     0     0     1.00  1.00  1.00  0     0     0     1.00  1.00  1.00
##  8  0     0     0     1.00  1.00  1.00  1.00  1.00  1.00  0     1.00  1.00
##  9  1.00  1.00  0     1.00  1.00  1.00  0     0     0     1.00  1.00  1.00
## 10  1.00  1.00  1.00  1.00  0     1.00  0     0     0     0     0     0   
## # ... with 16 more rows, and 12 more variables: S51 <dbl>, S52 <dbl>, S53
## #   <dbl>, S61 <dbl>, S62 <dbl>, S63 <dbl>, S71 <dbl>, S72 <dbl>, S73
## #   <dbl>, S81 <dbl>, S82 <dbl>, S83 <dbl>
## 
## $nunitcov
## [1] 2
## 
## $unitcov
##    Site   LN
## 1     1 1.32
## 2     2 4.97
## 3     3 1.02
## 4     4 2.20
## 5     5 2.89
## 6     6 2.87
## 7     7 1.24
## 8     8 1.03
## 9     9 1.14
## 10   10 0.73
## 11   11 5.11
## 12   12 5.80
## 13   13 3.65
## 14   14 6.65
## 15   15 1.76
## 16   16 2.21
## 17   17 4.38
## 18   18 1.37
## 19   19 1.29
## 20   20 1.13
## 21   21 4.66
## 22   22 2.73
## 23   23 2.27
## 24   24 0.90
## 25   25 3.00
## 26   26 4.50
## 
## $nsurvcov
## [1] 5
## 
## $survcov
##     Site Visit minQ maxQ SURVEY
## 1      1     1 0.61 5.59      1
## 2      2     1 0.45 6.63      1
## 3      3     1 0.12 3.19      1
## 4      4     1 0.32 6.40      1
## 5      5     1 0.22 6.36      1
## 6      6     1 0.55 4.97      1
## 7      7     1 0.37 7.44      1
## 8      8     1 0.57 5.72      1
## 9      9     1 0.84 1.59      1
## 10    10     1 0.56 5.60      1
## 11    11     1 0.46 6.06      1
## 12    12     1 0.70 3.39      1
## 13    13     1 0.20 4.79      1
## 14    14     1 0.17 2.72      1
## 15    15     1 0.79 3.49      1
## 16    16     1 0.64 2.01      1
## 17    17     1 0.92 7.15      1
## 18    18     1 0.62 1.02      1
## 19    19     1 0.44 6.36      1
## 20    20     1 0.81 6.84      1
## 21    21     1 0.10 3.64      1
## 22    22     1 0.99 2.02      1
## 23    23     1 0.63 7.42      1
## 24    24     1 0.29 2.31      1
## 25    25     1 0.48 4.18      1
## 26    26     1 0.47 7.75      1
## 27     1     2 0.16 7.58      2
## 28     2     2 0.06 1.47      2
## 29     3     2 0.21 6.73      2
## 30     4     2 0.57 5.92      2
## 31     5     2 0.85 6.87      2
## 32     6     2 0.42 1.53      2
## 33     7     2 0.12 4.67      2
## 34     8     2 0.96 3.55      2
## 35     9     2 0.05 5.30      2
## 36    10     2 0.26 1.63      2
## 37    11     2 0.15 7.52      2
## 38    12     2 0.69 6.08      2
## 39    13     2 0.97 6.39      2
## 40    14     2 0.32 6.94      2
## 41    15     2 0.69 3.55      2
## 42    16     2 0.51 5.89      2
## 43    17     2 0.11 3.53      2
## 44    18     2 0.46 6.64      2
## 45    19     2 0.91 5.77      2
## 46    20     2 0.12 3.82      2
## 47    21     2 0.50 6.73      2
## 48    22     2 0.94 1.67      2
## 49    23     2 0.81 1.19      2
## 50    24     2 0.70 6.35      2
## 51    25     2 0.69 7.47      2
## 52    26     2 0.49 6.23      2
## 53     1     3 0.64 7.03      3
## 54     2     3 0.93 3.49      3
## 55     3     3 0.03 6.35      3
## 56     4     3 0.67 2.39      3
## 57     5     3 0.02 4.86      3
## 58     6     3 0.45 3.12      3
## 59     7     3 0.34 3.55      3
## 60     8     3 0.89 7.27      3
## 61     9     3 0.61 7.24      3
## 62    10     3 0.14 1.35      3
## 63    11     3 0.30 2.64      3
## 64    12     3 0.34 6.52      3
## 65    13     3 0.55 5.65      3
## 66    14     3 1.01 3.98      3
## 67    15     3 0.58 2.64      3
## 68    16     3 0.27 3.33      3
## 69    17     3 0.77 3.88      3
## 70    18     3 0.38 1.17      3
## 71    19     3 0.37 5.92      3
## 72    20     3 0.39 1.94      3
## 73    21     3 0.21 7.65      3
## 74    22     3 0.44 7.57      3
## 75    23     3 0.09 1.08      3
## 76    24     3 0.75 2.03      3
## 77    25     3 0.84 7.74      3
## 78    26     3 0.73 2.96      3
## 79     1     4 0.92 1.22      4
## 80     2     4 0.34 3.36      4
## 81     3     4 0.26 1.46      4
## 82     4     4 0.37 0.81      4
## 83     5     4 0.78 7.44      4
## 84     6     4 0.99 2.14      4
## 85     7     4 0.49 7.30      4
## 86     8     4 0.52 3.98      4
## 87     9     4 0.68 6.56      4
## 88    10     4 0.01 1.75      4
## 89    11     4 0.46 2.43      4
## 90    12     4 0.72 5.27      4
## 91    13     4 0.32 6.32      4
## 92    14     4 0.60 1.14      4
## 93    15     4 0.93 2.25      4
## 94    16     4 0.57 6.83      4
## 95    17     4 1.01 7.26      4
## 96    18     4 0.99 3.69      4
## 97    19     4 0.23 6.24      4
## 98    20     4 0.23 2.52      4
## 99    21     4 0.06 2.76      4
## 100   22     4 0.34 6.58      4
## 101   23     4 0.05 2.77      4
## 102   24     4 0.80 2.80      4
## 103   25     4 0.60 5.86      4
## 104   26     4 0.55 4.29      4
## 105    1     5 1.00 6.73      5
## 106    2     5 0.20 2.64      5
## 107    3     5 0.99 4.71      5
## 108    4     5 0.40 5.06      5
## 109    5     5 0.47 5.63      5
## 110    6     5 0.85 0.91      5
## 111    7     5 0.21 1.35      5
## 112    8     5 0.67 6.47      5
## 113    9     5 0.06 3.12      5
## 114   10     5 0.48 2.14      5
## 115   11     5 0.15 6.06      5
## 116   12     5 0.91 4.69      5
## 117   13     5 0.67 3.27      5
## 118   14     5 0.87 7.35      5
## 119   15     5 0.50 4.62      5
## 120   16     5 0.00 3.96      5
## 121   17     5 0.88 6.06      5
## 122   18     5 0.90 6.80      5
## 123   19     5 0.83 2.12      5
## 124   20     5 0.75 7.36      5
## 125   21     5 0.27 3.32      5
## 126   22     5 0.35 1.75      5
## 127   23     5 0.64 4.36      5
## 128   24     5 0.30 6.18      5
## 129   25     5 0.36 4.85      5
## 130   26     5 0.91 3.45      5
## 131    1     6 0.10 4.77      6
## 132    2     6 0.67 3.21      6
## 133    3     6 0.81 1.32      6
## 134    4     6 0.87 5.05      6
## 135    5     6 0.43 4.13      6
## 136    6     6 0.50 1.07      6
## 137    7     6 0.73 1.03      6
## 138    8     6 0.68 4.25      6
## 139    9     6 0.74 1.88      6
## 140   10     6 0.22 1.92      6
## 141   11     6 0.05 1.86      6
## 142   12     6 0.19 6.91      6
## 143   13     6 0.25 2.61      6
## 144   14     6 0.69 6.68      6
## 145   15     6 0.94 7.31      6
## 146   16     6 0.60 5.22      6
## 147   17     6 0.36 7.68      6
## 148   18     6 0.14 5.18      6
## 149   19     6 0.79 7.07      6
## 150   20     6 0.27 7.75      6
## 151   21     6 0.93 4.60      6
## 152   22     6 0.33 4.60      6
## 153   23     6 0.49 2.37      6
## 154   24     6 0.61 5.27      6
## 155   25     6 0.52 2.75      6
## 156   26     6 0.50 2.04      6
## 157    1     7 0.27 1.87      7
## 158    2     7 0.77 0.86      7
## 159    3     7 0.47 1.01      7
## 160    4     7 0.30 5.63      7
## 161    5     7 0.45 7.58      7
## 162    6     7 0.64 2.70      7
## 163    7     7 0.95 0.84      7
## 164    8     7 0.83 2.27      7
## 165    9     7 0.20 2.76      7
## 166   10     7 0.35 2.70      7
## 167   11     7 0.81 6.64      7
## 168   12     7 0.18 5.61      7
## 169   13     7 0.35 2.84      7
## 170   14     7 0.39 1.40      7
## 171   15     7 0.23 1.93      7
## 172   16     7 0.48 5.67      7
## 173   17     7 0.38 4.61      7
## 174   18     7 0.39 7.15      7
## 175   19     7 0.14 4.91      7
## 176   20     7 0.08 2.26      7
## 177   21     7 0.88 5.98      7
## 178   22     7 0.71 1.73      7
## 179   23     7 0.22 0.80      7
## 180   24     7 0.32 3.17      7
## 181   25     7 0.02 5.44      7
## 182   26     7 0.16 1.14      7
## 183    1     8   NA   NA      8
## 184    2     8   NA   NA      8
## 185    3     8   NA   NA      8
## 186    4     8   NA   NA      8
## 187    5     8   NA   NA      8
## 188    6     8   NA   NA      8
## 189    7     8   NA   NA      8
## 190    8     8   NA   NA      8
## 191    9     8   NA   NA      8
## 192   10     8   NA   NA      8
## 193   11     8   NA   NA      8
## 194   12     8   NA   NA      8
## 195   13     8   NA   NA      8
## 196   14     8   NA   NA      8
## 197   15     8   NA   NA      8
## 198   16     8   NA   NA      8
## 199   17     8   NA   NA      8
## 200   18     8   NA   NA      8
## 201   19     8   NA   NA      8
## 202   20     8   NA   NA      8
## 203   21     8   NA   NA      8
## 204   22     8   NA   NA      8
## 205   23     8   NA   NA      8
## 206   24     8   NA   NA      8
## 207   25     8   NA   NA      8
## 208   26     8   NA   NA      8
## 209    1     1 0.61 5.59      9
## 210    2     1 0.45 6.63      9
## 211    3     1 0.12 3.19      9
## 212    4     1 0.32 6.40      9
## 213    5     1 0.22 6.36      9
## 214    6     1 0.55 4.97      9
## 215    7     1 0.37 7.44      9
## 216    8     1 0.57 5.72      9
## 217    9     1 0.84 1.59      9
## 218   10     1 0.56 5.60      9
## 219   11     1 0.46 6.06      9
## 220   12     1 0.70 3.39      9
## 221   13     1 0.20 4.79      9
## 222   14     1 0.17 2.72      9
## 223   15     1 0.79 3.49      9
## 224   16     1 0.64 2.01      9
## 225   17     1 0.92 7.15      9
## 226   18     1 0.62 1.02      9
## 227   19     1 0.44 6.36      9
## 228   20     1 0.81 6.84      9
## 229   21     1 0.10 3.64      9
## 230   22     1 0.99 2.02      9
## 231   23     1 0.63 7.42      9
## 232   24     1 0.29 2.31      9
## 233   25     1 0.48 4.18      9
## 234   26     1 0.47 7.75      9
## 235    1     2 0.16 7.58     10
## 236    2     2 0.06 1.47     10
## 237    3     2 0.21 6.73     10
## 238    4     2 0.57 5.92     10
## 239    5     2 0.85 6.87     10
## 240    6     2 0.42 1.53     10
## 241    7     2 0.12 4.67     10
## 242    8     2 0.96 3.55     10
## 243    9     2 0.05 5.30     10
## 244   10     2 0.26 1.63     10
## 245   11     2 0.15 7.52     10
## 246   12     2 0.69 6.08     10
## 247   13     2 0.97 6.39     10
## 248   14     2 0.32 6.94     10
## 249   15     2 0.69 3.55     10
## 250   16     2 0.51 5.89     10
## 251   17     2 0.11 3.53     10
## 252   18     2 0.46 6.64     10
## 253   19     2 0.91 5.77     10
## 254   20     2 0.12 3.82     10
## 255   21     2 0.50 6.73     10
## 256   22     2 0.94 1.67     10
## 257   23     2 0.81 1.19     10
## 258   24     2 0.70 6.35     10
## 259   25     2 0.69 7.47     10
## 260   26     2 0.49 6.23     10
## 261    1     3 0.64 7.03     11
## 262    2     3 0.93 3.49     11
## 263    3     3 0.03 6.35     11
## 264    4     3 0.67 2.39     11
## 265    5     3 0.02 4.86     11
## 266    6     3 0.45 3.12     11
## 267    7     3 0.34 3.55     11
## 268    8     3 0.89 7.27     11
## 269    9     3 0.61 7.24     11
## 270   10     3 0.14 1.35     11
## 271   11     3 0.30 2.64     11
## 272   12     3 0.34 6.52     11
## 273   13     3 0.55 5.65     11
## 274   14     3 1.01 3.98     11
## 275   15     3 0.58 2.64     11
## 276   16     3 0.27 3.33     11
## 277   17     3 0.77 3.88     11
## 278   18     3 0.38 1.17     11
## 279   19     3 0.37 5.92     11
## 280   20     3 0.39 1.94     11
## 281   21     3 0.21 7.65     11
## 282   22     3 0.44 7.57     11
## 283   23     3 0.09 1.08     11
## 284   24     3 0.75 2.03     11
## 285   25     3 0.84 7.74     11
## 286   26     3 0.73 2.96     11
## 287    1     4 0.92 1.22     12
## 288    2     4 0.34 3.36     12
## 289    3     4 0.26 1.46     12
## 290    4     4 0.37 0.81     12
## 291    5     4 0.78 7.44     12
## 292    6     4 0.99 2.14     12
## 293    7     4 0.49 7.30     12
## 294    8     4 0.52 3.98     12
## 295    9     4 0.68 6.56     12
## 296   10     4 0.01 1.75     12
## 297   11     4 0.46 2.43     12
## 298   12     4 0.72 5.27     12
## 299   13     4 0.32 6.32     12
## 300   14     4 0.60 1.14     12
## 301   15     4 0.93 2.25     12
## 302   16     4 0.57 6.83     12
## 303   17     4 1.01 7.26     12
## 304   18     4 0.99 3.69     12
## 305   19     4 0.23 6.24     12
## 306   20     4 0.23 2.52     12
## 307   21     4 0.06 2.76     12
## 308   22     4 0.34 6.58     12
## 309   23     4 0.05 2.77     12
## 310   24     4 0.80 2.80     12
## 311   25     4 0.60 5.86     12
## 312   26     4 0.55 4.29     12
## 313    1     5 1.00 6.73     13
## 314    2     5 0.20 2.64     13
## 315    3     5 0.99 4.71     13
## 316    4     5 0.40 5.06     13
## 317    5     5 0.47 5.63     13
## 318    6     5 0.85 0.91     13
## 319    7     5 0.21 1.35     13
## 320    8     5 0.67 6.47     13
## 321    9     5 0.06 3.12     13
## 322   10     5 0.48 2.14     13
## 323   11     5 0.15 6.06     13
## 324   12     5 0.91 4.69     13
## 325   13     5 0.67 3.27     13
## 326   14     5 0.87 7.35     13
## 327   15     5 0.50 4.62     13
## 328   16     5 0.00 3.96     13
## 329   17     5 0.88 6.06     13
## 330   18     5 0.90 6.80     13
## 331   19     5 0.83 2.12     13
## 332   20     5 0.75 7.36     13
## 333   21     5 0.27 3.32     13
## 334   22     5 0.35 1.75     13
## 335   23     5 0.64 4.36     13
## 336   24     5 0.30 6.18     13
## 337   25     5 0.36 4.85     13
## 338   26     5 0.91 3.45     13
## 339    1     6 0.10 4.77     14
## 340    2     6 0.67 3.21     14
## 341    3     6 0.81 1.32     14
## 342    4     6 0.87 5.05     14
## 343    5     6 0.43 4.13     14
## 344    6     6 0.50 1.07     14
## 345    7     6 0.73 1.03     14
## 346    8     6 0.68 4.25     14
## 347    9     6 0.74 1.88     14
## 348   10     6 0.22 1.92     14
## 349   11     6 0.05 1.86     14
## 350   12     6 0.19 6.91     14
## 351   13     6 0.25 2.61     14
## 352   14     6 0.69 6.68     14
## 353   15     6 0.94 7.31     14
## 354   16     6 0.60 5.22     14
## 355   17     6 0.36 7.68     14
## 356   18     6 0.14 5.18     14
## 357   19     6 0.79 7.07     14
## 358   20     6 0.27 7.75     14
## 359   21     6 0.93 4.60     14
## 360   22     6 0.33 4.60     14
## 361   23     6 0.49 2.37     14
## 362   24     6 0.61 5.27     14
## 363   25     6 0.52 2.75     14
## 364   26     6 0.50 2.04     14
## 365    1     7 0.27 1.87     15
## 366    2     7 0.77 0.86     15
## 367    3     7 0.47 1.01     15
## 368    4     7 0.30 5.63     15
## 369    5     7 0.45 7.58     15
## 370    6     7 0.64 2.70     15
## 371    7     7 0.95 0.84     15
## 372    8     7 0.83 2.27     15
## 373    9     7 0.20 2.76     15
## 374   10     7 0.35 2.70     15
## 375   11     7 0.81 6.64     15
## 376   12     7 0.18 5.61     15
## 377   13     7 0.35 2.84     15
## 378   14     7 0.39 1.40     15
## 379   15     7 0.23 1.93     15
## 380   16     7 0.48 5.67     15
## 381   17     7 0.38 4.61     15
## 382   18     7 0.39 7.15     15
## 383   19     7 0.14 4.91     15
## 384   20     7 0.08 2.26     15
## 385   21     7 0.88 5.98     15
## 386   22     7 0.71 1.73     15
## 387   23     7 0.22 0.80     15
## 388   24     7 0.32 3.17     15
## 389   25     7 0.02 5.44     15
## 390   26     7 0.16 1.14     15
## 391    1     8   NA   NA     16
## 392    2     8   NA   NA     16
## 393    3     8   NA   NA     16
## 394    4     8   NA   NA     16
## 395    5     8   NA   NA     16
## 396    6     8   NA   NA     16
## 397    7     8   NA   NA     16
## 398    8     8   NA   NA     16
## 399    9     8   NA   NA     16
## 400   10     8   NA   NA     16
## 401   11     8   NA   NA     16
## 402   12     8   NA   NA     16
## 403   13     8   NA   NA     16
## 404   14     8   NA   NA     16
## 405   15     8   NA   NA     16
## 406   16     8   NA   NA     16
## 407   17     8   NA   NA     16
## 408   18     8   NA   NA     16
## 409   19     8   NA   NA     16
## 410   20     8   NA   NA     16
## 411   21     8   NA   NA     16
## 412   22     8   NA   NA     16
## 413   23     8   NA   NA     16
## 414   24     8   NA   NA     16
## 415   25     8   NA   NA     16
## 416   26     8   NA   NA     16
## 417    1     1 0.61 5.59     17
## 418    2     1 0.45 6.63     17
## 419    3     1 0.12 3.19     17
## 420    4     1 0.32 6.40     17
## 421    5     1 0.22 6.36     17
## 422    6     1 0.55 4.97     17
## 423    7     1 0.37 7.44     17
## 424    8     1 0.57 5.72     17
## 425    9     1 0.84 1.59     17
## 426   10     1 0.56 5.60     17
## 427   11     1 0.46 6.06     17
## 428   12     1 0.70 3.39     17
## 429   13     1 0.20 4.79     17
## 430   14     1 0.17 2.72     17
## 431   15     1 0.79 3.49     17
## 432   16     1 0.64 2.01     17
## 433   17     1 0.92 7.15     17
## 434   18     1 0.62 1.02     17
## 435   19     1 0.44 6.36     17
## 436   20     1 0.81 6.84     17
## 437   21     1 0.10 3.64     17
## 438   22     1 0.99 2.02     17
## 439   23     1 0.63 7.42     17
## 440   24     1 0.29 2.31     17
## 441   25     1 0.48 4.18     17
## 442   26     1 0.47 7.75     17
## 443    1     2 0.16 7.58     18
## 444    2     2 0.06 1.47     18
## 445    3     2 0.21 6.73     18
## 446    4     2 0.57 5.92     18
## 447    5     2 0.85 6.87     18
## 448    6     2 0.42 1.53     18
## 449    7     2 0.12 4.67     18
## 450    8     2 0.96 3.55     18
## 451    9     2 0.05 5.30     18
## 452   10     2 0.26 1.63     18
## 453   11     2 0.15 7.52     18
## 454   12     2 0.69 6.08     18
## 455   13     2 0.97 6.39     18
## 456   14     2 0.32 6.94     18
## 457   15     2 0.69 3.55     18
## 458   16     2 0.51 5.89     18
## 459   17     2 0.11 3.53     18
## 460   18     2 0.46 6.64     18
## 461   19     2 0.91 5.77     18
## 462   20     2 0.12 3.82     18
## 463   21     2 0.50 6.73     18
## 464   22     2 0.94 1.67     18
## 465   23     2 0.81 1.19     18
## 466   24     2 0.70 6.35     18
## 467   25     2 0.69 7.47     18
## 468   26     2 0.49 6.23     18
## 469    1     3 0.64 7.03     19
## 470    2     3 0.93 3.49     19
## 471    3     3 0.03 6.35     19
## 472    4     3 0.67 2.39     19
## 473    5     3 0.02 4.86     19
## 474    6     3 0.45 3.12     19
## 475    7     3 0.34 3.55     19
## 476    8     3 0.89 7.27     19
## 477    9     3 0.61 7.24     19
## 478   10     3 0.14 1.35     19
## 479   11     3 0.30 2.64     19
## 480   12     3 0.34 6.52     19
## 481   13     3 0.55 5.65     19
## 482   14     3 1.01 3.98     19
## 483   15     3 0.58 2.64     19
## 484   16     3 0.27 3.33     19
## 485   17     3 0.77 3.88     19
## 486   18     3 0.38 1.17     19
## 487   19     3 0.37 5.92     19
## 488   20     3 0.39 1.94     19
## 489   21     3 0.21 7.65     19
## 490   22     3 0.44 7.57     19
## 491   23     3 0.09 1.08     19
## 492   24     3 0.75 2.03     19
## 493   25     3 0.84 7.74     19
## 494   26     3 0.73 2.96     19
## 495    1     4 0.92 1.22     20
## 496    2     4 0.34 3.36     20
## 497    3     4 0.26 1.46     20
## 498    4     4 0.37 0.81     20
## 499    5     4 0.78 7.44     20
## 500    6     4 0.99 2.14     20
## 501    7     4 0.49 7.30     20
## 502    8     4 0.52 3.98     20
## 503    9     4 0.68 6.56     20
## 504   10     4 0.01 1.75     20
## 505   11     4 0.46 2.43     20
## 506   12     4 0.72 5.27     20
## 507   13     4 0.32 6.32     20
## 508   14     4 0.60 1.14     20
## 509   15     4 0.93 2.25     20
## 510   16     4 0.57 6.83     20
## 511   17     4 1.01 7.26     20
## 512   18     4 0.99 3.69     20
## 513   19     4 0.23 6.24     20
## 514   20     4 0.23 2.52     20
## 515   21     4 0.06 2.76     20
## 516   22     4 0.34 6.58     20
## 517   23     4 0.05 2.77     20
## 518   24     4 0.80 2.80     20
## 519   25     4 0.60 5.86     20
## 520   26     4 0.55 4.29     20
## 521    1     5 1.00 6.73     21
## 522    2     5 0.20 2.64     21
## 523    3     5 0.99 4.71     21
## 524    4     5 0.40 5.06     21
## 525    5     5 0.47 5.63     21
## 526    6     5 0.85 0.91     21
## 527    7     5 0.21 1.35     21
## 528    8     5 0.67 6.47     21
## 529    9     5 0.06 3.12     21
## 530   10     5 0.48 2.14     21
## 531   11     5 0.15 6.06     21
## 532   12     5 0.91 4.69     21
## 533   13     5 0.67 3.27     21
## 534   14     5 0.87 7.35     21
## 535   15     5 0.50 4.62     21
## 536   16     5 0.00 3.96     21
## 537   17     5 0.88 6.06     21
## 538   18     5 0.90 6.80     21
## 539   19     5 0.83 2.12     21
## 540   20     5 0.75 7.36     21
## 541   21     5 0.27 3.32     21
## 542   22     5 0.35 1.75     21
## 543   23     5 0.64 4.36     21
## 544   24     5 0.30 6.18     21
## 545   25     5 0.36 4.85     21
## 546   26     5 0.91 3.45     21
## 547    1     6 0.10 4.77     22
## 548    2     6 0.67 3.21     22
## 549    3     6 0.81 1.32     22
## 550    4     6 0.87 5.05     22
## 551    5     6 0.43 4.13     22
## 552    6     6 0.50 1.07     22
## 553    7     6 0.73 1.03     22
## 554    8     6 0.68 4.25     22
## 555    9     6 0.74 1.88     22
## 556   10     6 0.22 1.92     22
## 557   11     6 0.05 1.86     22
## 558   12     6 0.19 6.91     22
## 559   13     6 0.25 2.61     22
## 560   14     6 0.69 6.68     22
## 561   15     6 0.94 7.31     22
## 562   16     6 0.60 5.22     22
## 563   17     6 0.36 7.68     22
## 564   18     6 0.14 5.18     22
## 565   19     6 0.79 7.07     22
## 566   20     6 0.27 7.75     22
## 567   21     6 0.93 4.60     22
## 568   22     6 0.33 4.60     22
## 569   23     6 0.49 2.37     22
## 570   24     6 0.61 5.27     22
## 571   25     6 0.52 2.75     22
## 572   26     6 0.50 2.04     22
## 573    1     7 0.27 1.87     23
## 574    2     7 0.77 0.86     23
## 575    3     7 0.47 1.01     23
## 576    4     7 0.30 5.63     23
## 577    5     7 0.45 7.58     23
## 578    6     7 0.64 2.70     23
## 579    7     7 0.95 0.84     23
## 580    8     7 0.83 2.27     23
## 581    9     7 0.20 2.76     23
## 582   10     7 0.35 2.70     23
## 583   11     7 0.81 6.64     23
## 584   12     7 0.18 5.61     23
## 585   13     7 0.35 2.84     23
## 586   14     7 0.39 1.40     23
## 587   15     7 0.23 1.93     23
## 588   16     7 0.48 5.67     23
## 589   17     7 0.38 4.61     23
## 590   18     7 0.39 7.15     23
## 591   19     7 0.14 4.91     23
## 592   20     7 0.08 2.26     23
## 593   21     7 0.88 5.98     23
## 594   22     7 0.71 1.73     23
## 595   23     7 0.22 0.80     23
## 596   24     7 0.32 3.17     23
## 597   25     7 0.02 5.44     23
## 598   26     7 0.16 1.14     23
## 599    1     8   NA   NA     24
## 600    2     8   NA   NA     24
## 601    3     8   NA   NA     24
## 602    4     8   NA   NA     24
## 603    5     8   NA   NA     24
## 604    6     8   NA   NA     24
## 605    7     8   NA   NA     24
## 606    8     8   NA   NA     24
## 607    9     8   NA   NA     24
## 608   10     8   NA   NA     24
## 609   11     8   NA   NA     24
## 610   12     8   NA   NA     24
## 611   13     8   NA   NA     24
## 612   14     8   NA   NA     24
## 613   15     8   NA   NA     24
## 614   16     8   NA   NA     24
## 615   17     8   NA   NA     24
## 616   18     8   NA   NA     24
## 617   19     8   NA   NA     24
## 618   20     8   NA   NA     24
## 619   21     8   NA   NA     24
## 620   22     8   NA   NA     24
## 621   23     8   NA   NA     24
## 622   24     8   NA   NA     24
## 623   25     8   NA   NA     24
## 624   26     8   NA   NA     24
## 
## $nsurveyseason
## [1] 3 3 3 3 3 3 3 3
## 
## $title
## [1] "sunfish SSMS"
## 
## $unitnames
##  [1] "unit1"  "unit2"  "unit3"  "unit4"  "unit5"  "unit6"  "unit7" 
##  [8] "unit8"  "unit9"  "unit10" "unit11" "unit12" "unit13" "unit14"
## [15] "unit15" "unit16" "unit17" "unit18" "unit19" "unit20" "unit21"
## [22] "unit22" "unit23" "unit24" "unit25" "unit26"
## 
## $surveynames
##  [1] "1-1" "1-2" "1-3" "2-1" "2-2" "2-3" "3-1" "3-2" "3-3" "4-1" "4-2"
## [12] "4-3" "5-1" "5-2" "5-3" "6-1" "6-2" "6-3" "7-1" "7-2" "7-3" "8-1"
## [23] "8-2" "8-3"
## 
## $paoname
## [1] "pres.pao"
## 
## $frq
##  [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 
## attr(,"class")
## [1] "pao"
# Define the models.
#    model.type do.1 is dynamic occupancy first parameterization
#               do.4 is dynamic occupancy 4th   parameterization (random occupancy)
# Random occupancy are fit using type="do.4" in the call.
#     Parameters are psi,  p with gamma=1-epsilon enforced internally

model.list.csv <- textConnection("
                                 p,               psi,         gamma,      epsilon,  model.type
                                 ~SEASON,         ~LN,         ~maxQ,      ~minQ,       do.1
                                 ~SEASON,         ~LN,         ~minQ,      ~minQ,       do.1
                                 ~SEASON,         ~LN,         ~minQ,      ~maxQ,       do.1
                                 ~SEASON,         ~1,         ~SEASON,    ~SEASON,     do.1")


model.list <- read.csv(model.list.csv, header=TRUE, as.is=TRUE, strip.white=TRUE)
model.list
##         p psi   gamma epsilon model.type
## 1 ~SEASON ~LN   ~maxQ   ~minQ       do.1
## 2 ~SEASON ~LN   ~minQ   ~minQ       do.1
## 3 ~SEASON ~LN   ~minQ   ~maxQ       do.1
## 4 ~SEASON  ~1 ~SEASON ~SEASON       do.1
# fit the model
model.fits <- plyr::alply(model.list, 1, function(x,detect.pao){
  cat("\n\n***** Starting ", unlist(x), "\n")
  if(x$model.type == 'do.1'){
    fit <- RPresence::occMod(model=list(as.formula(paste("psi",x$psi)),
                                        as.formula(paste("p"  ,x$p  )),
                                        as.formula(paste("gamma",x$gamma)),
                                        as.formula(paste("epsilon",x$epsilon))),
                             data=detect.pao,type="do.1")
  }
  if(x$model.type == 'do.4'){
    fit <- RPresence::occMod(model=list(as.formula(paste("psi",x$psi)),
                                        as.formula(paste("p"  ,x$p  ))),
                             data=detect.pao,type="do.4")
  }
  fit <- RPresence.add.derived(fit)
  fit
  
},detect.pao=sunfish.pao)
## 
## 
## ***** Starting  ~SEASON ~LN ~maxQ ~minQ do.1 
## PRESENCE Version 2.12.21.
## Loading required package: plyr
## 
## 
## ***** Starting  ~SEASON ~LN ~minQ ~minQ do.1 
## PRESENCE Version 2.12.21.
## 
## 
## ***** Starting  ~SEASON ~LN ~minQ ~maxQ do.1 
## PRESENCE Version 2.12.21.
## 
## 
## ***** Starting  ~SEASON ~1 ~SEASON ~SEASON do.1 
## PRESENCE Version 2.12.21.
# Look at output from a specified model
model.number <- 1


names(model.fits[[model.number]])
##  [1] "modname"     "model"       "dmat"        "data"        "outfile"    
##  [6] "neg2loglike" "aic"         "npar"        "beta"        "real"       
## [11] "derived"     "gof"         "warnings"    "version"
names(model.fits[[model.number]]$real)
## [1] "psi"     "gamma"   "epsilon" "p"       "theta"   "th0pi"
model.fits[[model.number]]$beta
## $psi
##   psi.coeff
## 1 -0.755011
## 2  0.690331
## 
## $psi.VC
##           A1        A2
## A1  0.836775 -0.311879
## A2 -0.311879  0.159827
## 
## $gamma
##   gamma.coeff
## 1   -5.562369
## 2    2.441616
## 
## $gamma.VC
##           B1        B2
## B1  4.979296 -2.077430
## B2 -2.077430  0.925414
## 
## $epsilon
##   epsilon.coeff
## 1      2.019153
## 2     -8.485075
## 
## $epsilon.VC
##           C1        C2
## C1  0.319066 -0.860020
## C2 -0.860020  3.021943
## 
## $p
##    p.coeff
## 1 1.099655
## 2 0.561162
## 3 1.099465
## 4 0.277320
## 5 0.258332
## 6 0.179798
## 7 0.237975
## 8 0.316904
## 
## $p.VC
##           D1        D2        D3        D4        D5        D6        D7
## D1  0.109131 -0.109130 -0.109119 -0.109146 -0.109177 -0.109124 -0.108700
## D2 -0.109130  0.229378  0.109140  0.109148  0.109189  0.109122  0.108691
## D3 -0.109119  0.109140  0.339079  0.109144  0.109252  0.109105  0.109409
## D4 -0.109146  0.109148  0.109144  0.214892  0.109196  0.109141  0.108702
## D5 -0.109177  0.109189  0.109252  0.109196  0.218199  0.109173  0.108928
## D6 -0.109124  0.109122  0.109105  0.109141  0.109173  0.208204  0.108679
## D7 -0.108700  0.108691  0.109409  0.108702  0.108928  0.108679  0.228684
## D8 -0.109124  0.109125  0.109146  0.109146  0.109184  0.109121  0.108796
##           D8
## D1 -0.109124
## D2  0.109125
## D3  0.109146
## D4  0.109146
## D5  0.109184
## D6  0.109121
## D7  0.108796
## D8  0.224353
## 
## $VC
##           A1        A2        B1        B2        C1        C2        D1
## A1  0.836775 -0.311879  0.001206 -0.000048  0.000800 -0.001309 -0.003740
## A2 -0.311879  0.159827 -0.007349  0.001855 -0.000639  0.000475 -0.003855
## B1  0.001206 -0.007349  4.979296 -2.077430 -0.098418  0.467864  0.013475
## B2 -0.000048  0.001855 -2.077430  0.925414  0.037353 -0.176917 -0.003661
## C1  0.000800 -0.000639 -0.098418  0.037353  0.319066 -0.860020  0.000467
## C2 -0.001309  0.000475  0.467864 -0.176917 -0.860020  3.021943  0.000375
## D1 -0.003740 -0.003855  0.013475 -0.003661  0.000467  0.000375  0.109131
## D2  0.003726  0.003861 -0.014764  0.003922 -0.000628  0.000753 -0.109130
## D3  0.003740  0.003847 -0.009301  0.002092 -0.005287  0.023282 -0.109119
## D4  0.003739  0.003862 -0.013689  0.003221  0.000371 -0.001140 -0.109146
## D5  0.003728  0.003884 -0.010384  0.000706 -0.002018  0.007979 -0.109177
## D6  0.003744  0.003850 -0.013470  0.003752  0.000559 -0.002573 -0.109124
## D7  0.003794  0.003612  0.092900 -0.036377 -0.015652  0.073580 -0.108700
## D8  0.003745  0.003848 -0.013023  0.003496  0.000305  0.000633 -0.109124
##           D2        D3        D4        D5        D6        D7        D8
## A1  0.003726  0.003740  0.003739  0.003728  0.003744  0.003794  0.003745
## A2  0.003861  0.003847  0.003862  0.003884  0.003850  0.003612  0.003848
## B1 -0.014764 -0.009301 -0.013689 -0.010384 -0.013470  0.092900 -0.013023
## B2  0.003922  0.002092  0.003221  0.000706  0.003752 -0.036377  0.003496
## C1 -0.000628 -0.005287  0.000371 -0.002018  0.000559 -0.015652  0.000305
## C2  0.000753  0.023282 -0.001140  0.007979 -0.002573  0.073580  0.000633
## D1 -0.109130 -0.109119 -0.109146 -0.109177 -0.109124 -0.108700 -0.109124
## D2  0.229378  0.109140  0.109148  0.109189  0.109122  0.108691  0.109125
## D3  0.109140  0.339079  0.109144  0.109252  0.109105  0.109409  0.109146
## D4  0.109148  0.109144  0.214892  0.109196  0.109141  0.108702  0.109146
## D5  0.109189  0.109252  0.109196  0.218199  0.109173  0.108928  0.109184
## D6  0.109122  0.109105  0.109141  0.109173  0.208204  0.108679  0.109121
## D7  0.108691  0.109409  0.108702  0.108928  0.108679  0.228684  0.108796
## D8  0.109125  0.109146  0.109146  0.109184  0.109121  0.108796  0.224353
names(model.fits[[model.number]]$derived)
## [1] "psi"     "all_psi" "lambda"  "lambdap"
model.fits[[model.number]]$derived$psi[1:10,]
##                est         se lower_0.95 upper_0.95
## unit1_2  0.9778537 0.01436967  0.9232369  0.9938688
## unit2_2  0.8671848 0.04645862  0.7475705  0.9350444
## unit3_2  0.5937346 0.11349299  0.3675475  0.7861048
## unit4_2  0.7730427 0.05490708  0.6484410  0.8628246
## unit5_2  0.5827042 0.08017766  0.4225343  0.7271375
## unit6_2  0.9485505 0.02655958  0.8638533  0.9816751
## unit7_2  0.8708179 0.04553819  0.7530241  0.9371218
## unit8_2  0.9723082 0.01702207  0.9104743  0.9918182
## unit9_2  0.5822173 0.13217193  0.3245098  0.8016895
## unit10_2 0.9731035 0.01724051  0.9086650  0.9924569
model.fits[[model.number]]$real$gamma[1:5,]
##                    est           se lower_0.95 upper_0.95
## gamma1_unit1 0.9996924 0.0010046539  0.8433980  0.9999995
## gamma1_unit2 0.9999757 0.0001033555  0.9075889  1.0000000
## gamma1_unit3 0.9025941 0.0939694135  0.5328320  0.9868909
## gamma1_unit4 0.9999574 0.0001718848  0.8959136  1.0000000
## gamma1_unit5 0.9999530 0.0001877284  0.8937504  1.0000000
model.fits[[model.number]]$real$epsilon[1:5,]
##                       est         se lower_0.95 upper_0.95
## epsilon1_unit1 0.04082642 0.02458983 0.01227937  0.1271933
## epsilon1_unit2 0.14195691 0.04826181 0.07071810  0.2645308
## epsilon1_unit3 0.73124414 0.07766568 0.55635472  0.8551412
## epsilon1_unit4 0.33268391 0.06204251 0.22377341  0.4629850
## epsilon1_unit5 0.53803550 0.07327866 0.39522496  0.6748655
# Estimate of initial occupance
model.fits[[model.number]]$real$psi[grepl('unit1_', row.names(model.fits[[model.number]]$real$psi)),]
##               est        se lower_0.95 upper_0.95
## unit1_1 0.5389772 0.1342479  0.2884973  0.7712081
model.fits[[model.number]]$derived$psi[ grepl('unit1_', row.names(model.fits[[model.number]]$derived$psi)),]
##               est          se lower_0.95 upper_0.95
## unit1_2 0.9778537 0.014369667  0.9232369  0.9938688
## unit1_3 0.3550013 0.078926573  0.2187927  0.5196055
## unit1_4 0.9886538 0.008641238  0.9506227  0.9974708
## unit1_5 0.9864276 0.011338135  0.9325292  0.9973903
## unit1_6 0.9984677 0.001930336  0.9821298  0.9998706
## unit1_7 0.2379044 0.076861914  0.1197183  0.4174365
## unit1_8 0.3404969 0.106954572  0.1687395  0.5676884
# Derived parameters - all of the psi stacked together
model.fits[[model.number]]$derived$all_psi[ grepl('unit1_', row.names(model.fits[[model.number]]$derived$all_psi)),]
##               est          se lower_0.95 upper_0.95
## unit1_1 0.5389772 0.134247934  0.2884973  0.7712081
## unit1_2 0.9778537 0.014369667  0.9232369  0.9938688
## unit1_3 0.3550013 0.078926573  0.2187927  0.5196055
## unit1_4 0.9886538 0.008641238  0.9506227  0.9974708
## unit1_5 0.9864276 0.011338135  0.9325292  0.9973903
## unit1_6 0.9984677 0.001930336  0.9821298  0.9998706
## unit1_7 0.2379044 0.076861914  0.1197183  0.4174365
## unit1_8 0.3404969 0.106954572  0.1687395  0.5676884
# Estimate of  local extinction probability for each unit
model.fits[[model.number]]$real$epsilon[ seq(1, by=nrow(input.history), length.out=length(Nvisits.per.season)-1),]
##                        est          se   lower_0.95 upper_0.95
## epsilon1_unit1 0.040826416 0.024589827 0.0122793693 0.12719330
## epsilon2_unit1 0.659606468 0.078172814 0.4947859833 0.79313693
## epsilon3_unit1 0.031944327 0.020882859 0.0087072317 0.11029474
## epsilon4_unit1 0.003057438 0.003467866 0.0003296986 0.02772700
## epsilon5_unit1 0.001553140 0.001974345 0.0001282636 0.01851384
## epsilon6_unit1 0.763261673 0.076080552 0.5855032396 0.88036429
## epsilon7_unit1 0.432461017 0.067195860 0.3082285900 0.56581081
# Estimate of  local colonization probability for each unit
model.fits[[model.number]]$real$gamma[ seq(1, by=nrow(input.history), length.out=length(Nvisits.per.season)-1),]
##                     est           se  lower_0.95 upper_0.95
## gamma1_unit1 0.99969236 1.004654e-03 0.843398000  0.9999995
## gamma2_unit1 0.99999761 1.232883e-05 0.944055014  1.0000000
## gamma3_unit1 0.99999085 4.241293e-05 0.925052754  1.0000000
## gamma4_unit1 0.07020155 7.407161e-02 0.008100074  0.4110937
## gamma5_unit1 0.99998097 8.278001e-05 0.912278219  1.0000000
## gamma6_unit1 0.99772646 5.655703e-03 0.768060532  0.9999828
## gamma7_unit1 0.26962085 1.314819e-01 0.090696244  0.5773902
# Estimate of probability of detection at each time point for each unit
model.fits[[model.number]]$real$p[ grepl('unit1_', row.names(model.fits[[model.number]]$real$p), fixed=TRUE),]
## [1] est        se         lower_0.95 upper_0.95
## <0 rows> (or 0-length row.names)
# Get the change in occupancy
# Not yet possible to estimate the se of these values. May have to use bootstrapping.
model.fits[[model.number]]$derived$lambda [grepl('unit1_', row.names(model.fits[[model.number]]$derived$lambda),  fixed=TRUE),]
##               est se lower_0.95 upper_0.95
## unit1_1 1.8142764 NA         NA         NA
## unit1_2 0.3630414 NA         NA         NA
## unit1_3 2.7849298 NA         NA         NA
## unit1_4 0.9977482 NA         NA         NA
## unit1_5 1.0122057 NA         NA         NA
## unit1_6 0.2382695 NA         NA         NA
## unit1_7 1.4312341 NA         NA         NA
model.fits[[model.number]]$derived$lambdap[grepl('unit1_', row.names(model.fits[[model.number]]$derived$lambdap), fixed=TRUE),]
##                  est se lower_0.95 upper_0.95
## unit1_1 3.776799e+01 NA         NA         NA
## unit1_2 1.246520e-02 NA         NA         NA
## unit1_3 1.583155e+02 NA         NA         NA
## unit1_4 8.340915e-01 NA         NA         NA
## unit1_5 8.965542e+00 NA         NA         NA
## unit1_6 4.790801e-04 NA         NA         NA
## unit1_7 1.653877e+00 NA         NA         NA
# collect models and make AIC table
aic.table <- RPresence::createAicTable(model.fits)
aic.table$table
##                                        Model      AIC   neg2ll npar
## 1   psi(LN)p(SEASON)gamma(maxQ)epsilon(minQ) 611.0108 583.0108   14
## 2   psi(LN)p(SEASON)gamma(minQ)epsilon(minQ) 637.8562 609.8562   14
## 3   psi(LN)p(SEASON)gamma(minQ)epsilon(maxQ) 693.8409 665.8409   14
## 4 psi()p(SEASON)gamma(SEASON)epsilon(SEASON) 713.5897 667.5897   23
##   warn.conv warn.VC     DAIC modlike wgt
## 1         0       0   0.0000       1   1
## 2         0       0  26.8454       0   0
## 3         0       0  82.8301       0   0
## 4         0       0 102.5789       0   0