# American Toad

# Extracted from
#    Darryl I. MacKenzie, et al. 2002.
#    Estimating site occupancy rates when detection probabilities are less than one.
#    Ecology 83:2248-2255.
#    doi:10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2]

# 29 sites with 82 sampling occasions in 2000.
# Volunteers visited sites and recorded presence/absence of toads by calls.
# Habitat (type of pond, permanent or ephemeral) and temperature at visit recorded.

# Single Species Single Season Occupancy

# Fitting models using RMark


# 2018-08-15 Code contributed by Carl James Schwarz (cschwarz.stat.sfu.cs@gmail.com)
library(readxl)
library(RMark)
## This is RMark 2.2.5
##  Documentation available at http://www.phidot.org/software/mark/rmark/RMarkDocumentation.zip
library(ggplot2)

# get the data read in
# Data for detections should be a data frame with rows corresponding to sites
# and columns to visits.
# The usual 1=detected; 0=not detected; NA=not visited is used.

input.data <- readxl::read_excel("../AmericanToad.xls",
                                 sheet="AmToadDetectionHistories",
                                 na="-",
                                 col_names=FALSE)  # notice no column names in row 1 of data file. 

head(input.data)
## # A tibble: 6 x 82
##    X__1  X__2  X__3  X__4  X__5  X__6  X__7  X__8  X__9 X__10 X__11 X__12
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA
## 2    NA    NA    NA    NA    NA     0    NA    NA     0    NA    NA    NA
## 3    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA
## 4    NA    NA    NA     0    NA    NA    NA    NA    NA    NA     0    NA
## 5    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA
## 6    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA    NA
## # ... with 70 more variables: X__13 <dbl>, X__14 <dbl>, X__15 <dbl>, X__16
## #   <dbl>, X__17 <dbl>, X__18 <dbl>, X__19 <dbl>, X__20 <dbl>, X__21
## #   <dbl>, X__22 <dbl>, X__23 <dbl>, X__24 <dbl>, X__25 <dbl>, X__26
## #   <dbl>, X__27 <dbl>, X__28 <dbl>, X__29 <dbl>, X__30 <dbl>, X__31
## #   <dbl>, X__32 <dbl>, X__33 <dbl>, X__34 <dbl>, X__35 <dbl>, X__36
## #   <dbl>, X__37 <dbl>, X__38 <dbl>, X__39 <dbl>, X__40 <dbl>, X__41
## #   <dbl>, X__42 <dbl>, X__43 <dbl>, X__44 <dbl>, X__45 <dbl>, X__46
## #   <dbl>, X__47 <dbl>, X__48 <dbl>, X__49 <dbl>, X__50 <dbl>, X__51
## #   <dbl>, X__52 <dbl>, X__53 <dbl>, X__54 <dbl>, X__55 <dbl>, X__56
## #   <dbl>, X__57 <dbl>, X__58 <dbl>, X__59 <dbl>, X__60 <dbl>, X__61
## #   <dbl>, X__62 <dbl>, X__63 <dbl>, X__64 <dbl>, X__65 <dbl>, X__66
## #   <dbl>, X__67 <dbl>, X__68 <dbl>, X__69 <dbl>, X__70 <dbl>, X__71
## #   <dbl>, X__72 <dbl>, X__73 <dbl>, X__74 <dbl>, X__75 <dbl>, X__76
## #   <dbl>, X__77 <dbl>, X__78 <dbl>, X__79 <dbl>, X__80 <dbl>, X__81
## #   <dbl>, X__82 <dbl>
# Extract the history records

# Extract the history records and create a capture history
input.history <- data.frame(freq=1,
                            ch=apply(input.data,1,paste, collapse=""), stringsAsFactors=FALSE)
head(input.history)
##   freq
## 1    1
## 2    1
## 3    1
## 4    1
## 5    1
## 6    1
##                                                                                                                                                                  ch
## 1    NANANANANANANANANANANANANANANANANANANANANA0NANANA0NANANANANANANANANANANANANANANANANA0NANANA0NANANANANANANANANANANA0NANANANANANANANANANANANANANANANA0NANANANANA
## 2   NANANANANA0NANA0NANANANANANANANANANANANANA1NANANANANANANANANANANANANANANANANANANANANANANANANANANA0NANANANANANANANANANANANANANANANANANANANANANANANANA0NANANANANA
## 3   NANANANANANANANANANANANANANANANANANANANANANANA0NANANANANANANANANANANANANANANANANANANA0NANANA0NANANANANANANANANANANA0NANANANANANANANANANANANANANANANA0NANANANANA
## 4          NANANA0NANANANANANA0NANANANANANA1NANANANANANA1NANANANANANA0NANANA0NANANANANANANANA0NANANANANANA0NANANANANANANA0NANANA0NANANANANANANANA0NANANANA0NANANANA
## 5    NANANANANANANANANANANANANANANANANA0NANANANANANANANANANANANANANA0NANANANANANANANANANANANA0NANANANANANA0NANANANANANANANANANANANANA00NANANANANANANANANANANANANANA
## 6 NANANANANANANANANANANANANANANANANANANANANANANANANA1NANANANANANANANANANANANANANANANANANANANANANA0NANANANANANANANANANANANANANANANANANANANANANANANANANA0NANANANANANA
# Change any NA to . in the chapter history
input.history$ch <- gsub("NA",".", input.history$ch, fixed=TRUE)
head(input.history)
##   freq
## 1    1
## 2    1
## 3    1
## 4    1
## 5    1
## 6    1
##                                                                                   ch
## 1 .....................0...0.................0...0...........0................0.....
## 2 .....0..0.............1...........................0.........................0.....
## 3 .......................0...................0...0...........0................0.....
## 4 ...0......0......1......1......0...0........0......0.......0...0........0....0....
## 5 .................0..............0............0......0.............00..............
## 6 .........................1......................0..........................0......
# do some basic checks on your data 
# e.g. check number of sites; number of visits etc
nrow(input.history)
## [1] 29
# Get the pond information
pond.data <- readxl::read_excel("../AmericanToad.xls",
                                sheet="Pond",
                                na="-",
                                col_names=TRUE)  
head(pond.data)
## # A tibble: 6 x 1
##    Pond
##   <dbl>
## 1  1.00
## 2  1.00
## 3  1.00
## 4  1.00
## 5  0   
## 6  0
input.history$Pond <- as.factor(car::recode(pond.data$Pond,
                                        "1='P'; 0='E'; " ))
head(input.history)
##   freq
## 1    1
## 2    1
## 3    1
## 4    1
## 5    1
## 6    1
##                                                                                   ch
## 1 .....................0...0.................0...0...........0................0.....
## 2 .....0..0.............1...........................0.........................0.....
## 3 .......................0...................0...0...........0................0.....
## 4 ...0......0......1......1......0...0........0......0.......0...0........0....0....
## 5 .................0..............0............0......0.............00..............
## 6 .........................1......................0..........................0......
##   Pond
## 1    P
## 2    P
## 3    P
## 4    P
## 5    E
## 6    E
# Get the temperature data
temp.data <- readxl::read_excel("../AmericanToad.xls",
                                sheet="AmToadTemperature",
                                na="-",
                                col_names=FALSE)  # notice no column names in row 1 of data file. 
head(temp.data)
## # A tibble: 6 x 82
##    X__1  X__2  X__3  X__4  X__5  X__6  X__7  X__8  X__9 X__10 X__11 X__12
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1     0     0     0  0        0  0        0     0  0        0  0        0
## 2     0     0     0  0        0  7.00     0     0  3.00     0  0        0
## 3     0     0     0  0        0  0        0     0  0        0  0        0
## 4     0     0     0  3.00     0  0        0     0  0        0  6.00     0
## 5     0     0     0  0        0  0        0     0  0        0  0        0
## 6     0     0     0  0        0  0        0     0  0        0  0        0
## # ... with 70 more variables: X__13 <dbl>, X__14 <dbl>, X__15 <dbl>, X__16
## #   <dbl>, X__17 <dbl>, X__18 <dbl>, X__19 <dbl>, X__20 <dbl>, X__21
## #   <dbl>, X__22 <dbl>, X__23 <dbl>, X__24 <dbl>, X__25 <dbl>, X__26
## #   <dbl>, X__27 <dbl>, X__28 <dbl>, X__29 <dbl>, X__30 <dbl>, X__31
## #   <dbl>, X__32 <dbl>, X__33 <dbl>, X__34 <dbl>, X__35 <dbl>, X__36
## #   <dbl>, X__37 <dbl>, X__38 <dbl>, X__39 <dbl>, X__40 <dbl>, X__41
## #   <dbl>, X__42 <dbl>, X__43 <dbl>, X__44 <dbl>, X__45 <dbl>, X__46
## #   <dbl>, X__47 <dbl>, X__48 <dbl>, X__49 <dbl>, X__50 <dbl>, X__51
## #   <dbl>, X__52 <dbl>, X__53 <dbl>, X__54 <dbl>, X__55 <dbl>, X__56
## #   <dbl>, X__57 <dbl>, X__58 <dbl>, X__59 <dbl>, X__60 <dbl>, X__61
## #   <dbl>, X__62 <dbl>, X__63 <dbl>, X__64 <dbl>, X__65 <dbl>, X__66
## #   <dbl>, X__67 <dbl>, X__68 <dbl>, X__69 <dbl>, X__70 <dbl>, X__71
## #   <dbl>, X__72 <dbl>, X__73 <dbl>, X__74 <dbl>, X__75 <dbl>, X__76
## #   <dbl>, X__77 <dbl>, X__78 <dbl>, X__79 <dbl>, X__80 <dbl>, X__81
## #   <dbl>, X__82 <dbl>
# Notice that RMark does not allow missing values in time-varying covariates, even when visits are not made
# so do not set these to missing as in RPresence
# temp.data[ is.na(input.data)] <- NA


colnames(temp.data) = paste("Temp", 1:ncol(temp.data), sep="") # assign the observer at each time point
head(temp.data)
## # A tibble: 6 x 82
##   Temp1 Temp2 Temp3 Temp4 Temp5 Temp6 Temp7 Temp8 Temp9 Temp10 Temp~ Temp~
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl>
## 1     0     0     0  0        0  0        0     0  0         0  0        0
## 2     0     0     0  0        0  7.00     0     0  3.00      0  0        0
## 3     0     0     0  0        0  0        0     0  0         0  0        0
## 4     0     0     0  3.00     0  0        0     0  0         0  6.00     0
## 5     0     0     0  0        0  0        0     0  0         0  0        0
## 6     0     0     0  0        0  0        0     0  0         0  0        0
## # ... with 70 more variables: Temp13 <dbl>, Temp14 <dbl>, Temp15 <dbl>,
## #   Temp16 <dbl>, Temp17 <dbl>, Temp18 <dbl>, Temp19 <dbl>, Temp20 <dbl>,
## #   Temp21 <dbl>, Temp22 <dbl>, Temp23 <dbl>, Temp24 <dbl>, Temp25 <dbl>,
## #   Temp26 <dbl>, Temp27 <dbl>, Temp28 <dbl>, Temp29 <dbl>, Temp30 <dbl>,
## #   Temp31 <dbl>, Temp32 <dbl>, Temp33 <dbl>, Temp34 <dbl>, Temp35 <dbl>,
## #   Temp36 <dbl>, Temp37 <dbl>, Temp38 <dbl>, Temp39 <dbl>, Temp40 <dbl>,
## #   Temp41 <dbl>, Temp42 <dbl>, Temp43 <dbl>, Temp44 <dbl>, Temp45 <dbl>,
## #   Temp46 <dbl>, Temp47 <dbl>, Temp48 <dbl>, Temp49 <dbl>, Temp50 <dbl>,
## #   Temp51 <dbl>, Temp52 <dbl>, Temp53 <dbl>, Temp54 <dbl>, Temp55 <dbl>,
## #   Temp56 <dbl>, Temp57 <dbl>, Temp58 <dbl>, Temp59 <dbl>, Temp60 <dbl>,
## #   Temp61 <dbl>, Temp62 <dbl>, Temp63 <dbl>, Temp64 <dbl>, Temp65 <dbl>,
## #   Temp66 <dbl>, Temp67 <dbl>, Temp68 <dbl>, Temp69 <dbl>, Temp70 <dbl>,
## #   Temp71 <dbl>, Temp72 <dbl>, Temp73 <dbl>, Temp74 <dbl>, Temp75 <dbl>,
## #   Temp76 <dbl>, Temp77 <dbl>, Temp78 <dbl>, Temp79 <dbl>, Temp80 <dbl>,
## #   Temp81 <dbl>, Temp82 <dbl>
input.history <- cbind(input.history, temp.data)
head(input.history)
##   freq
## 1    1
## 2    1
## 3    1
## 4    1
## 5    1
## 6    1
##                                                                                   ch
## 1 .....................0...0.................0...0...........0................0.....
## 2 .....0..0.............1...........................0.........................0.....
## 3 .......................0...................0...0...........0................0.....
## 4 ...0......0......1......1......0...0........0......0.......0...0........0....0....
## 5 .................0..............0............0......0.............00..............
## 6 .........................1......................0..........................0......
##   Pond Temp1 Temp2 Temp3 Temp4 Temp5 Temp6 Temp7 Temp8 Temp9 Temp10 Temp11
## 1    P     0     0     0     0     0     0     0     0     0      0      0
## 2    P     0     0     0     0     0     7     0     0     3      0      0
## 3    P     0     0     0     0     0     0     0     0     0      0      0
## 4    P     0     0     0     3     0     0     0     0     0      0      6
## 5    E     0     0     0     0     0     0     0     0     0      0      0
## 6    E     0     0     0     0     0     0     0     0     0      0      0
##   Temp12 Temp13 Temp14 Temp15 Temp16 Temp17 Temp18 Temp19 Temp20 Temp21
## 1      0      0      0      0      0      0      0      0      0      0
## 2      0      0      0      0      0      0      0      0      0      0
## 3      0      0      0      0      0      0      0      0      0      0
## 4      0      0      0      0      0      0     10      0      0      0
## 5      0      0      0      0      0      0     14      0      0      0
## 6      0      0      0      0      0      0      0      0      0      0
##   Temp22 Temp23 Temp24 Temp25 Temp26 Temp27 Temp28 Temp29 Temp30 Temp31
## 1     13      0      0      0     15      0      0      0      0      0
## 2      0      5      0      0      0      0      0      0      0      0
## 3      0      0     16      0      0      0      0      0      0      0
## 4      0      0      0     15      0      0      0      0      0      0
## 5      0      0      0      0      0      0      0      0      0      0
## 6      0      0      0      0     18      0      0      0      0      0
##   Temp32 Temp33 Temp34 Temp35 Temp36 Temp37 Temp38 Temp39 Temp40 Temp41
## 1      0      0      0      0      0      0      0      0      0      0
## 2      0      0      0      0      0      0      0      0      0      0
## 3      0      0      0      0      0      0      0      0      0      0
## 4      6      0      0      0      7      0      0      0      0      0
## 5      0     13      0      0      0      0      0      0      0      0
## 6      0      0      0      0      0      0      0      0      0      0
##   Temp42 Temp43 Temp44 Temp45 Temp46 Temp47 Temp48 Temp49 Temp50 Temp51
## 1      0      0      5      0      0      0      8      0      0      0
## 2      0      0      0      0      0      0      0      0      0     12
## 3      0      0     16      0      0      0      8      0      0      0
## 4      0      0      0     12      0      0      0      0      0      0
## 5      0      0      0      0     10      0      0      0      0      0
## 6      0      0      0      0      0      0      0      7      0      0
##   Temp52 Temp53 Temp54 Temp55 Temp56 Temp57 Temp58 Temp59 Temp60 Temp61
## 1      0      0      0      0      0      0      0      0     27      0
## 2      0      0      0      0      0      0      0      0      0      0
## 3      0      0      0      0      0      0      0      0     27      0
## 4     11      0      0      0      0      0      0      0     23      0
## 5      0     12      0      0      0      0      0      0      0      0
## 6      0      0      0      0      0      0      0      0      0      0
##   Temp62 Temp63 Temp64 Temp65 Temp66 Temp67 Temp68 Temp69 Temp70 Temp71
## 1      0      0      0      0      0      0      0      0      0      0
## 2      0      0      0      0      0      0      0      0      0      0
## 3      0      0      0      0      0      0      0      0      0      0
## 4      0      0     19      0      0      0      0      0      0      0
## 5      0      0      0      0      0     14     10      0      0      0
## 6      0      0      0      0      0      0      0      0      0      0
##   Temp72 Temp73 Temp74 Temp75 Temp76 Temp77 Temp78 Temp79 Temp80 Temp81
## 1      0      0      0      0      0     18      0      0      0      0
## 2      0      0      0      0      0     16      0      0      0      0
## 3      0      0      0      0      0     18      0      0      0      0
## 4      0     14      0      0      0      0     18      0      0      0
## 5      0      0      0      0      0      0      0      0      0      0
## 6      0      0      0      0     15      0      0      0      0      0
##   Temp82
## 1      0
## 2      0
## 3      0
## 4      0
## 5      0
## 6      0
# Illustration of using categorical covariate in the modelling process by creating groups
amtoad.data <- process.data(data=input.history, group="Pond",
                         model="Occupancy")
summary(amtoad.data)
##                  Length Class      Mode     
## data             86     data.frame list     
## model             1     -none-     character
## mixtures          1     -none-     numeric  
## freq              2     data.frame list     
## nocc              1     -none-     numeric  
## nocc.secondary    0     -none-     NULL     
## time.intervals   82     -none-     numeric  
## begin.time        1     -none-     numeric  
## age.unit          1     -none-     numeric  
## initial.ages      2     -none-     numeric  
## group.covariates  1     data.frame list     
## nstrata           1     -none-     numeric  
## strata.labels     0     -none-     NULL     
## counts            0     -none-     NULL     
## reverse           1     -none-     logical  
## areas             0     -none-     NULL     
## events            0     -none-     NULL
# If survey covariates are present, modify the ddl
amtoad.ddl <- make.design.data(amtoad.data)
amtoad.ddl
## $p
##     par.index model.index group age time Age Time Pond
## 1           1           1     E   0    1   0    0    E
## 2           2           2     E   1    2   1    1    E
## 3           3           3     E   2    3   2    2    E
## 4           4           4     E   3    4   3    3    E
## 5           5           5     E   4    5   4    4    E
## 6           6           6     E   5    6   5    5    E
## 7           7           7     E   6    7   6    6    E
## 8           8           8     E   7    8   7    7    E
## 9           9           9     E   8    9   8    8    E
## 10         10          10     E   9   10   9    9    E
## 11         11          11     E  10   11  10   10    E
## 12         12          12     E  11   12  11   11    E
## 13         13          13     E  12   13  12   12    E
## 14         14          14     E  13   14  13   13    E
## 15         15          15     E  14   15  14   14    E
## 16         16          16     E  15   16  15   15    E
## 17         17          17     E  16   17  16   16    E
## 18         18          18     E  17   18  17   17    E
## 19         19          19     E  18   19  18   18    E
## 20         20          20     E  19   20  19   19    E
## 21         21          21     E  20   21  20   20    E
## 22         22          22     E  21   22  21   21    E
## 23         23          23     E  22   23  22   22    E
## 24         24          24     E  23   24  23   23    E
## 25         25          25     E  24   25  24   24    E
## 26         26          26     E  25   26  25   25    E
## 27         27          27     E  26   27  26   26    E
## 28         28          28     E  27   28  27   27    E
## 29         29          29     E  28   29  28   28    E
## 30         30          30     E  29   30  29   29    E
## 31         31          31     E  30   31  30   30    E
## 32         32          32     E  31   32  31   31    E
## 33         33          33     E  32   33  32   32    E
## 34         34          34     E  33   34  33   33    E
## 35         35          35     E  34   35  34   34    E
## 36         36          36     E  35   36  35   35    E
## 37         37          37     E  36   37  36   36    E
## 38         38          38     E  37   38  37   37    E
## 39         39          39     E  38   39  38   38    E
## 40         40          40     E  39   40  39   39    E
## 41         41          41     E  40   41  40   40    E
## 42         42          42     E  41   42  41   41    E
## 43         43          43     E  42   43  42   42    E
## 44         44          44     E  43   44  43   43    E
## 45         45          45     E  44   45  44   44    E
## 46         46          46     E  45   46  45   45    E
## 47         47          47     E  46   47  46   46    E
## 48         48          48     E  47   48  47   47    E
## 49         49          49     E  48   49  48   48    E
## 50         50          50     E  49   50  49   49    E
## 51         51          51     E  50   51  50   50    E
## 52         52          52     E  51   52  51   51    E
## 53         53          53     E  52   53  52   52    E
## 54         54          54     E  53   54  53   53    E
## 55         55          55     E  54   55  54   54    E
## 56         56          56     E  55   56  55   55    E
## 57         57          57     E  56   57  56   56    E
## 58         58          58     E  57   58  57   57    E
## 59         59          59     E  58   59  58   58    E
## 60         60          60     E  59   60  59   59    E
## 61         61          61     E  60   61  60   60    E
## 62         62          62     E  61   62  61   61    E
## 63         63          63     E  62   63  62   62    E
## 64         64          64     E  63   64  63   63    E
## 65         65          65     E  64   65  64   64    E
## 66         66          66     E  65   66  65   65    E
## 67         67          67     E  66   67  66   66    E
## 68         68          68     E  67   68  67   67    E
## 69         69          69     E  68   69  68   68    E
## 70         70          70     E  69   70  69   69    E
## 71         71          71     E  70   71  70   70    E
## 72         72          72     E  71   72  71   71    E
## 73         73          73     E  72   73  72   72    E
## 74         74          74     E  73   74  73   73    E
## 75         75          75     E  74   75  74   74    E
## 76         76          76     E  75   76  75   75    E
## 77         77          77     E  76   77  76   76    E
## 78         78          78     E  77   78  77   77    E
## 79         79          79     E  78   79  78   78    E
## 80         80          80     E  79   80  79   79    E
## 81         81          81     E  80   81  80   80    E
## 82         82          82     E  81   82  81   81    E
## 83         83          83     P   0    1   0    0    P
## 84         84          84     P   1    2   1    1    P
## 85         85          85     P   2    3   2    2    P
## 86         86          86     P   3    4   3    3    P
## 87         87          87     P   4    5   4    4    P
## 88         88          88     P   5    6   5    5    P
## 89         89          89     P   6    7   6    6    P
## 90         90          90     P   7    8   7    7    P
## 91         91          91     P   8    9   8    8    P
## 92         92          92     P   9   10   9    9    P
## 93         93          93     P  10   11  10   10    P
## 94         94          94     P  11   12  11   11    P
## 95         95          95     P  12   13  12   12    P
## 96         96          96     P  13   14  13   13    P
## 97         97          97     P  14   15  14   14    P
## 98         98          98     P  15   16  15   15    P
## 99         99          99     P  16   17  16   16    P
## 100       100         100     P  17   18  17   17    P
## 101       101         101     P  18   19  18   18    P
## 102       102         102     P  19   20  19   19    P
## 103       103         103     P  20   21  20   20    P
## 104       104         104     P  21   22  21   21    P
## 105       105         105     P  22   23  22   22    P
## 106       106         106     P  23   24  23   23    P
## 107       107         107     P  24   25  24   24    P
## 108       108         108     P  25   26  25   25    P
## 109       109         109     P  26   27  26   26    P
## 110       110         110     P  27   28  27   27    P
## 111       111         111     P  28   29  28   28    P
## 112       112         112     P  29   30  29   29    P
## 113       113         113     P  30   31  30   30    P
## 114       114         114     P  31   32  31   31    P
## 115       115         115     P  32   33  32   32    P
## 116       116         116     P  33   34  33   33    P
## 117       117         117     P  34   35  34   34    P
## 118       118         118     P  35   36  35   35    P
## 119       119         119     P  36   37  36   36    P
## 120       120         120     P  37   38  37   37    P
## 121       121         121     P  38   39  38   38    P
## 122       122         122     P  39   40  39   39    P
## 123       123         123     P  40   41  40   40    P
## 124       124         124     P  41   42  41   41    P
## 125       125         125     P  42   43  42   42    P
## 126       126         126     P  43   44  43   43    P
## 127       127         127     P  44   45  44   44    P
## 128       128         128     P  45   46  45   45    P
## 129       129         129     P  46   47  46   46    P
## 130       130         130     P  47   48  47   47    P
## 131       131         131     P  48   49  48   48    P
## 132       132         132     P  49   50  49   49    P
## 133       133         133     P  50   51  50   50    P
## 134       134         134     P  51   52  51   51    P
## 135       135         135     P  52   53  52   52    P
## 136       136         136     P  53   54  53   53    P
## 137       137         137     P  54   55  54   54    P
## 138       138         138     P  55   56  55   55    P
## 139       139         139     P  56   57  56   56    P
## 140       140         140     P  57   58  57   57    P
## 141       141         141     P  58   59  58   58    P
## 142       142         142     P  59   60  59   59    P
## 143       143         143     P  60   61  60   60    P
## 144       144         144     P  61   62  61   61    P
## 145       145         145     P  62   63  62   62    P
## 146       146         146     P  63   64  63   63    P
## 147       147         147     P  64   65  64   64    P
## 148       148         148     P  65   66  65   65    P
## 149       149         149     P  66   67  66   66    P
## 150       150         150     P  67   68  67   67    P
## 151       151         151     P  68   69  68   68    P
## 152       152         152     P  69   70  69   69    P
## 153       153         153     P  70   71  70   70    P
## 154       154         154     P  71   72  71   71    P
## 155       155         155     P  72   73  72   72    P
## 156       156         156     P  73   74  73   73    P
## 157       157         157     P  74   75  74   74    P
## 158       158         158     P  75   76  75   75    P
## 159       159         159     P  76   77  76   76    P
## 160       160         160     P  77   78  77   77    P
## 161       161         161     P  78   79  78   78    P
## 162       162         162     P  79   80  79   79    P
## 163       163         163     P  80   81  80   80    P
## 164       164         164     P  81   82  81   81    P
## 
## $Psi
##   par.index model.index group age time Age Time Pond
## 1         1         165     E   0    1   0    0    E
## 2         2         166     P   0    1   0    0    P
## 
## $pimtypes
## $pimtypes$p
## $pimtypes$p$pim.type
## [1] "all"
## 
## 
## $pimtypes$Psi
## $pimtypes$Psi$pim.type
## [1] "all"
# What are the parameter names for Single Season Single Species models
setup.parameters("Occupancy", check=TRUE)
## [1] "p"   "Psi"
# Fit a model
# Notice that RMark does not allow missing values in time-varying covariates, even when visits are not made

# Note that formula have an equal sign
mod.fit <-  RMark::mark(amtoad.data, ddl=amtoad.ddl,
                        model="Occupancy",
                        model.parameters=list(
                          Psi   =list(formula=~Pond),
                          p     =list(formula=~Temp) # need to specify rest of obsevers after the intercept 
                        )
)
## 
## Output summary for Occupancy model
## Name : p(~Temp)Psi(~Pond) 
## 
## Npar :  4
## -2lnL:  175.1601
## AICc :  184.8268
## 
## Beta
##                   estimate        se       lcl        ucl
## p:(Intercept)   -2.2312206 0.5558228 -3.320633 -1.1418078
## p:Temp           0.0507852 0.0322792 -0.012482  0.1140524
## Psi:(Intercept) -0.5661261 0.6207633 -1.782822  0.6505701
## Psi:PondP        1.8948084 1.5894671 -1.220547  5.0101639
## 
## 
## Real Parameter p
##                     1         2         3         4         5         6
## Group:PondE 0.1072501 0.0988377 0.0983708 0.0994634 0.0983708 0.1024836
## Group:PondP 0.1072501 0.0988377 0.0983708 0.0994634 0.0983708 0.1024836
##                     7         8        9        10        11        12
## Group:PondE 0.1080914 0.0996204 0.101043 0.0975969 0.1012022 0.0979058
## Group:PondP 0.1080914 0.0996204 0.101043 0.0975969 0.1012022 0.0979058
##                    13        14        15        16        17        18
## Group:PondE 0.0975969 0.0989938 0.1024836 0.1054196 0.1065813 0.1007253
## Group:PondP 0.0975969 0.0989938 0.1024836 0.1054196 0.1065813 0.1007253
##                    19        20        21        22        23        24
## Group:PondE 0.0997775 0.1013616 0.1021619 0.1049252 0.1059161 0.1074179
## Group:PondP 0.0997775 0.1013616 0.1021619 0.1049252 0.1059161 0.1074179
##                    25        26        27        28        29        30
## Group:PondE 0.1064146 0.1153893 0.1037795 0.1029679 0.1031298 0.1021619
## Group:PondP 0.1064146 0.1153893 0.1037795 0.1029679 0.1031298 0.1021619
##                    31        32       33        34        35        36
## Group:PondE 0.0985262 0.0991501 0.106082 0.1004085 0.0989938 0.1013616
## Group:PondP 0.0985262 0.0991501 0.106082 0.1004085 0.0989938 0.1013616
##                    37        38        39        40        41        42
## Group:PondE 0.0985262 0.1023227 0.1074179 0.1002504 0.1042691 0.1023227
## Group:PondP 0.0985262 0.1023227 0.1074179 0.1002504 0.1042691 0.1023227
##                    43        44        45        46        47        48
## Group:PondE 0.1045967 0.1039425 0.0988377 0.1021619 0.1069152 0.1032918
## Group:PondP 0.1045967 0.1039425 0.0988377 0.1021619 0.1069152 0.1032918
##                   49        50        51        52        53        54
## Group:PondE 0.106082 0.1013616 0.1054196 0.1082603 0.1079227 0.0997775
## Group:PondP 0.106082 0.1013616 0.1054196 0.1082603 0.1079227 0.0997775
##                    55        56        57        58        59        60
## Group:PondE 0.1024836 0.1062482 0.1042691 0.1069152 0.1047608 0.1229231
## Group:PondP 0.1024836 0.1062482 0.1042691 0.1069152 0.1047608 0.1229231
##                    61        62        63        64       65        66
## Group:PondE 0.1085989 0.1136138 0.1057504 0.1065813 0.125015 0.1004085
## Group:PondP 0.1085989 0.1136138 0.1057504 0.1065813 0.125015 0.1004085
##                    67        68        69        70        71        72
## Group:PondE 0.1020014 0.1069152 0.1018411 0.1037795 0.1074179 0.1041057
## Group:PondP 0.1020014 0.1069152 0.1018411 0.1037795 0.1074179 0.1041057
##                    73        74        75        76       77        78
## Group:PondE 0.0991501 0.1018411 0.1018411 0.1080914 0.125976 0.1115146
## Group:PondP 0.0991501 0.1018411 0.1018411 0.1080914 0.125976 0.1115146
##                    79        80        81        82
## Group:PondE 0.1026448 0.0991501 0.1045967 0.1057504
## Group:PondP 0.1026448 0.0991501 0.1045967 0.1057504
## 
## 
## Real Parameter Psi
##                     1
## Group:PondE 0.3621312
## Group:PondP 0.7906226
summary(mod.fit)
## Output summary for Occupancy model
## Name : p(~Temp)Psi(~Pond) 
## 
## Npar :  4
## -2lnL:  175.1601
## AICc :  184.8268
## 
## Beta
##                   estimate        se       lcl        ucl
## p:(Intercept)   -2.2312206 0.5558228 -3.320633 -1.1418078
## p:Temp           0.0507852 0.0322792 -0.012482  0.1140524
## Psi:(Intercept) -0.5661261 0.6207633 -1.782822  0.6505701
## Psi:PondP        1.8948084 1.5894671 -1.220547  5.0101639
## 
## 
## Real Parameter p
##                     1         2         3         4         5         6
## Group:PondE 0.1072501 0.0988377 0.0983708 0.0994634 0.0983708 0.1024836
## Group:PondP 0.1072501 0.0988377 0.0983708 0.0994634 0.0983708 0.1024836
##                     7         8        9        10        11        12
## Group:PondE 0.1080914 0.0996204 0.101043 0.0975969 0.1012022 0.0979058
## Group:PondP 0.1080914 0.0996204 0.101043 0.0975969 0.1012022 0.0979058
##                    13        14        15        16        17        18
## Group:PondE 0.0975969 0.0989938 0.1024836 0.1054196 0.1065813 0.1007253
## Group:PondP 0.0975969 0.0989938 0.1024836 0.1054196 0.1065813 0.1007253
##                    19        20        21        22        23        24
## Group:PondE 0.0997775 0.1013616 0.1021619 0.1049252 0.1059161 0.1074179
## Group:PondP 0.0997775 0.1013616 0.1021619 0.1049252 0.1059161 0.1074179
##                    25        26        27        28        29        30
## Group:PondE 0.1064146 0.1153893 0.1037795 0.1029679 0.1031298 0.1021619
## Group:PondP 0.1064146 0.1153893 0.1037795 0.1029679 0.1031298 0.1021619
##                    31        32       33        34        35        36
## Group:PondE 0.0985262 0.0991501 0.106082 0.1004085 0.0989938 0.1013616
## Group:PondP 0.0985262 0.0991501 0.106082 0.1004085 0.0989938 0.1013616
##                    37        38        39        40        41        42
## Group:PondE 0.0985262 0.1023227 0.1074179 0.1002504 0.1042691 0.1023227
## Group:PondP 0.0985262 0.1023227 0.1074179 0.1002504 0.1042691 0.1023227
##                    43        44        45        46        47        48
## Group:PondE 0.1045967 0.1039425 0.0988377 0.1021619 0.1069152 0.1032918
## Group:PondP 0.1045967 0.1039425 0.0988377 0.1021619 0.1069152 0.1032918
##                   49        50        51        52        53        54
## Group:PondE 0.106082 0.1013616 0.1054196 0.1082603 0.1079227 0.0997775
## Group:PondP 0.106082 0.1013616 0.1054196 0.1082603 0.1079227 0.0997775
##                    55        56        57        58        59        60
## Group:PondE 0.1024836 0.1062482 0.1042691 0.1069152 0.1047608 0.1229231
## Group:PondP 0.1024836 0.1062482 0.1042691 0.1069152 0.1047608 0.1229231
##                    61        62        63        64       65        66
## Group:PondE 0.1085989 0.1136138 0.1057504 0.1065813 0.125015 0.1004085
## Group:PondP 0.1085989 0.1136138 0.1057504 0.1065813 0.125015 0.1004085
##                    67        68        69        70        71        72
## Group:PondE 0.1020014 0.1069152 0.1018411 0.1037795 0.1074179 0.1041057
## Group:PondP 0.1020014 0.1069152 0.1018411 0.1037795 0.1074179 0.1041057
##                    73        74        75        76       77        78
## Group:PondE 0.0991501 0.1018411 0.1018411 0.1080914 0.125976 0.1115146
## Group:PondP 0.0991501 0.1018411 0.1018411 0.1080914 0.125976 0.1115146
##                    79        80        81        82
## Group:PondE 0.1026448 0.0991501 0.1045967 0.1057504
## Group:PondP 0.1026448 0.0991501 0.1045967 0.1057504
## 
## 
## Real Parameter Psi
##                     1
## Group:PondE 0.3621312
## Group:PondP 0.7906226
# Look the objects returned in more details
names(mod.fit)
##  [1] "data"             "model"            "title"           
##  [4] "model.name"       "links"            "mixtures"        
##  [7] "call"             "parameters"       "time.intervals"  
## [10] "number.of.groups" "group.labels"     "nocc"            
## [13] "begin.time"       "covariates"       "fixed"           
## [16] "design.matrix"    "pims"             "design.data"     
## [19] "strata.labels"    "mlogit.list"      "profile.int"     
## [22] "simplify"         "model.parameters" "results"         
## [25] "output"
names(mod.fit$results)
##  [1] "lnl"              "deviance"         "deviance.df"     
##  [4] "npar"             "n"                "AICc"            
##  [7] "beta"             "real"             "beta.vcv"        
## [10] "derived"          "derived.vcv"      "covariate.values"
## [13] "singular"         "real.vcv"
# look at estimates on beta and original scale
mod.fit$results$beta  # on the logit scale
##                   estimate        se       lcl        ucl
## p:(Intercept)   -2.2312206 0.5558228 -3.320633 -1.1418078
## p:Temp           0.0507852 0.0322792 -0.012482  0.1140524
## Psi:(Intercept) -0.5661261 0.6207633 -1.782822  0.6505701
## Psi:PondP        1.8948084 1.5894671 -1.220547  5.0101639
mod.fit$results$real# on the regular 0-1 scale for each site
##               estimate        se       lcl       ucl fixed    note
## p gE a0 t1   0.1072501 0.0471317 0.0437740 0.2396986              
## p gE a1 t2   0.0988377 0.0484319 0.0364047 0.2415061              
## p gE a2 t3   0.0983708 0.0484951 0.0360155 0.2416247              
## p gE a3 t4   0.0994634 0.0483457 0.0369297 0.2413503              
## p gE a4 t5   0.0983708 0.0484951 0.0360155 0.2416247              
## p gE a5 t6   0.1024836 0.0479046 0.0395165 0.2406464              
## p gE a6 t7   0.1080914 0.0469865 0.0445471 0.2395522              
## p gE a7 t8   0.0996204 0.0483237 0.0370619 0.2413118              
## p gE a8 t9   0.1010430 0.0481200 0.0382717 0.2409722              
## p gE a9 t10  0.0975969 0.0485975 0.0353750 0.2418253              
## p gE a10 t11 0.1012022 0.0480966 0.0384083 0.2409353              
## p gE a11 t12 0.0979058 0.0485570 0.0356300 0.2417446              
## p gE a12 t13 0.0975969 0.0485975 0.0353750 0.2418253              
## p gE a13 t14 0.0989938 0.0484106 0.0365353 0.2414669              
## p gE a14 t15 0.1024836 0.0479046 0.0395165 0.2406464              
## p gE a15 t16 0.1054196 0.0474390 0.0421141 0.2400389              
## p gE a16 t17 0.1065813 0.0472454 0.0431640 0.2398195              
## p gE a17 t18 0.1007253 0.0481663 0.0379999 0.2410465              
## p gE a18 t19 0.0997775 0.0483017 0.0371946 0.2412734              
## p gE a19 t20 0.1013616 0.0480731 0.0385453 0.2408986              
## p gE a20 t21 0.1021619 0.0479534 0.0392368 0.2407176              
## p gE a21 t22 0.1049252 0.0475198 0.0416710 0.2401359              
## p gE a22 t23 0.1059161 0.0473569 0.0425613 0.2399437              
## p gE a23 t24 0.1074179 0.0471030 0.0439277 0.2396689              
## p gE a24 t25 0.1064146 0.0472735 0.0430126 0.2398502              
## p gE a25 t26 0.1153893 0.0456313 0.0515132 0.2385509              
## p gE a26 t27 0.1037795 0.0477033 0.0406531 0.2403689              
## p gE a27 t28 0.1029679 0.0478302 0.0399394 0.2405410              
## p gE a28 t29 0.1031298 0.0478051 0.0400812 0.2405062              
## p gE a29 t30 0.1021619 0.0479534 0.0392368 0.2407176              
## p gE a30 t31 0.0985262 0.0484742 0.0361448 0.2415850              
## p gE a31 t32 0.0991501 0.0483891 0.0366664 0.2414279              
## p gE a32 t33 0.1060820 0.0473292 0.0427113 0.2399123              
## p gE a33 t34 0.1004085 0.0482120 0.0377297 0.2411214              
## p gE a34 t35 0.0989938 0.0484106 0.0365353 0.2414669              
## p gE a35 t36 0.1013616 0.0480731 0.0385453 0.2408986              
## p gE a36 t37 0.0985262 0.0484742 0.0361448 0.2415850              
## p gE a37 t38 0.1023227 0.0479291 0.0393765 0.2406819              
## p gE a38 t39 0.1074179 0.0471030 0.0439277 0.2396689              
## p gE a39 t40 0.1002504 0.0482346 0.0375953 0.2411592              
## p gE a40 t41 0.1042691 0.0476255 0.0410866 0.2402679              
## p gE a41 t42 0.1023227 0.0479291 0.0393765 0.2406819              
## p gE a42 t43 0.1045967 0.0475729 0.0413779 0.2402015              
## p gE a43 t44 0.1039425 0.0476775 0.0407971 0.2403351              
## p gE a44 t45 0.0988377 0.0484319 0.0364047 0.2415061              
## p gE a45 t46 0.1021619 0.0479534 0.0392368 0.2407176              
## p gE a46 t47 0.1069152 0.0471889 0.0434681 0.2397586              
## p gE a47 t48 0.1032918 0.0477799 0.0402235 0.2404716              
## p gE a48 t49 0.1060820 0.0473292 0.0427113 0.2399123              
## p gE a49 t50 0.1013616 0.0480731 0.0385453 0.2408986              
## p gE a50 t51 0.1054196 0.0474390 0.0421141 0.2400389              
## p gE a51 t52 0.1082603 0.0469570 0.0447032 0.2395236              
## p gE a52 t53 0.1079227 0.0470158 0.0443916 0.2395811              
## p gE a53 t54 0.0997775 0.0483017 0.0371946 0.2412734              
## p gE a54 t55 0.1024836 0.0479046 0.0395165 0.2406464              
## p gE a55 t56 0.1062482 0.0473014 0.0428617 0.2398812              
## p gE a56 t57 0.1042691 0.0476255 0.0410866 0.2402679              
## p gE a57 t58 0.1069152 0.0471889 0.0434681 0.2397586              
## p gE a58 t59 0.1047608 0.0475464 0.0415242 0.2401686              
## p gE a59 t60 0.1229231 0.0440937 0.0591535 0.2380449              
## p gE a60 t61 0.1085989 0.0468976 0.0450166 0.2394669              
## p gE a61 t62 0.1136138 0.0459752 0.0497768 0.2387495              
## p gE a62 t63 0.1057504 0.0473844 0.0424118 0.2399752              
## p gE a63 t64 0.1065813 0.0472454 0.0431640 0.2398195              
## p gE a64 t65 0.1250150 0.0436500 0.0613470 0.2380055              
## p gE a65 t66 0.1004085 0.0482120 0.0377297 0.2411214              
## p gE a66 t67 0.1020014 0.0479777 0.0390977 0.2407534              
## p gE a67 t68 0.1069152 0.0471889 0.0434681 0.2397586              
## p gE a68 t69 0.1018411 0.0480017 0.0389589 0.2407894              
## p gE a69 t70 0.1037795 0.0477033 0.0406531 0.2403689              
## p gE a70 t71 0.1074179 0.0471030 0.0439277 0.2396689              
## p gE a71 t72 0.1041057 0.0476516 0.0409417 0.2403014              
## p gE a72 t73 0.0991501 0.0483891 0.0366664 0.2414279              
## p gE a73 t74 0.1018411 0.0480017 0.0389589 0.2407894              
## p gE a74 t75 0.1018411 0.0480017 0.0389589 0.2407894              
## p gE a75 t76 0.1080914 0.0469865 0.0445471 0.2395522              
## p gE a76 t77 0.1259760 0.0434445 0.0623641 0.2380028              
## p gE a77 t78 0.1115146 0.0463707 0.0477578 0.2390219              
## p gE a78 t79 0.1026448 0.0478799 0.0396571 0.2406111              
## p gE a79 t80 0.0991501 0.0483891 0.0366664 0.2414279              
## p gE a80 t81 0.1045967 0.0475729 0.0413779 0.2402015              
## p gE a81 t82 0.1057504 0.0473844 0.0424118 0.2399752              
## Psi gE a0 t1 0.3621312 0.1433915 0.1439550 0.6571389              
## Psi gP a0 t1 0.7906226 0.2510265 0.1619883 0.9866246
# derived variables is the occupancy probability 
names(mod.fit$results$derived)
## [1] "Occupancy"
mod.fit$results$derived$Occupancy
##    estimate        se       lcl       ucl
## 1 0.3621312 0.1433915 0.1439550 0.6571389
## 2 0.7906226 0.2510265 0.1619883 0.9866246
# get the two psi values and their covariance
get.real(mod.fit, "Psi", se=TRUE, vcv=TRUE)
## $estimates
##              all.diff.index par.index  estimate        se       lcl
## Psi gE a0 t1            165        83 0.3621312 0.1433915 0.1439550
## Psi gP a0 t1            166        84 0.7906226 0.2510265 0.1619883
##                    ucl group age time Age Time Pond
## Psi gE a0 t1 0.6571389     E   0    1   0    0    E
## Psi gP a0 t1 0.9866246     P   0    1   0    0    P
## 
## $vcv.real
##             83          84
## 83 0.020561117 0.003030027
## 84 0.003030027 0.063014304
get.real(mod.fit, "Psi", pim=TRUE)
##                     1
## Group:PondE 0.3621312
## Group:PondP 0.7906226
# make a plot of the probability of detection as a function of temperature
Temp.df <- data.frame(Temp1=seq(min(temp.data,na.rm=TRUE),max(temp.data, na.rm=TRUE),1))

amtoad.ddl$p # see the index numbers
##     par.index model.index group age time Age Time Pond
## 1           1           1     E   0    1   0    0    E
## 2           2           2     E   1    2   1    1    E
## 3           3           3     E   2    3   2    2    E
## 4           4           4     E   3    4   3    3    E
## 5           5           5     E   4    5   4    4    E
## 6           6           6     E   5    6   5    5    E
## 7           7           7     E   6    7   6    6    E
## 8           8           8     E   7    8   7    7    E
## 9           9           9     E   8    9   8    8    E
## 10         10          10     E   9   10   9    9    E
## 11         11          11     E  10   11  10   10    E
## 12         12          12     E  11   12  11   11    E
## 13         13          13     E  12   13  12   12    E
## 14         14          14     E  13   14  13   13    E
## 15         15          15     E  14   15  14   14    E
## 16         16          16     E  15   16  15   15    E
## 17         17          17     E  16   17  16   16    E
## 18         18          18     E  17   18  17   17    E
## 19         19          19     E  18   19  18   18    E
## 20         20          20     E  19   20  19   19    E
## 21         21          21     E  20   21  20   20    E
## 22         22          22     E  21   22  21   21    E
## 23         23          23     E  22   23  22   22    E
## 24         24          24     E  23   24  23   23    E
## 25         25          25     E  24   25  24   24    E
## 26         26          26     E  25   26  25   25    E
## 27         27          27     E  26   27  26   26    E
## 28         28          28     E  27   28  27   27    E
## 29         29          29     E  28   29  28   28    E
## 30         30          30     E  29   30  29   29    E
## 31         31          31     E  30   31  30   30    E
## 32         32          32     E  31   32  31   31    E
## 33         33          33     E  32   33  32   32    E
## 34         34          34     E  33   34  33   33    E
## 35         35          35     E  34   35  34   34    E
## 36         36          36     E  35   36  35   35    E
## 37         37          37     E  36   37  36   36    E
## 38         38          38     E  37   38  37   37    E
## 39         39          39     E  38   39  38   38    E
## 40         40          40     E  39   40  39   39    E
## 41         41          41     E  40   41  40   40    E
## 42         42          42     E  41   42  41   41    E
## 43         43          43     E  42   43  42   42    E
## 44         44          44     E  43   44  43   43    E
## 45         45          45     E  44   45  44   44    E
## 46         46          46     E  45   46  45   45    E
## 47         47          47     E  46   47  46   46    E
## 48         48          48     E  47   48  47   47    E
## 49         49          49     E  48   49  48   48    E
## 50         50          50     E  49   50  49   49    E
## 51         51          51     E  50   51  50   50    E
## 52         52          52     E  51   52  51   51    E
## 53         53          53     E  52   53  52   52    E
## 54         54          54     E  53   54  53   53    E
## 55         55          55     E  54   55  54   54    E
## 56         56          56     E  55   56  55   55    E
## 57         57          57     E  56   57  56   56    E
## 58         58          58     E  57   58  57   57    E
## 59         59          59     E  58   59  58   58    E
## 60         60          60     E  59   60  59   59    E
## 61         61          61     E  60   61  60   60    E
## 62         62          62     E  61   62  61   61    E
## 63         63          63     E  62   63  62   62    E
## 64         64          64     E  63   64  63   63    E
## 65         65          65     E  64   65  64   64    E
## 66         66          66     E  65   66  65   65    E
## 67         67          67     E  66   67  66   66    E
## 68         68          68     E  67   68  67   67    E
## 69         69          69     E  68   69  68   68    E
## 70         70          70     E  69   70  69   69    E
## 71         71          71     E  70   71  70   70    E
## 72         72          72     E  71   72  71   71    E
## 73         73          73     E  72   73  72   72    E
## 74         74          74     E  73   74  73   73    E
## 75         75          75     E  74   75  74   74    E
## 76         76          76     E  75   76  75   75    E
## 77         77          77     E  76   77  76   76    E
## 78         78          78     E  77   78  77   77    E
## 79         79          79     E  78   79  78   78    E
## 80         80          80     E  79   80  79   79    E
## 81         81          81     E  80   81  80   80    E
## 82         82          82     E  81   82  81   81    E
## 83         83          83     P   0    1   0    0    P
## 84         84          84     P   1    2   1    1    P
## 85         85          85     P   2    3   2    2    P
## 86         86          86     P   3    4   3    3    P
## 87         87          87     P   4    5   4    4    P
## 88         88          88     P   5    6   5    5    P
## 89         89          89     P   6    7   6    6    P
## 90         90          90     P   7    8   7    7    P
## 91         91          91     P   8    9   8    8    P
## 92         92          92     P   9   10   9    9    P
## 93         93          93     P  10   11  10   10    P
## 94         94          94     P  11   12  11   11    P
## 95         95          95     P  12   13  12   12    P
## 96         96          96     P  13   14  13   13    P
## 97         97          97     P  14   15  14   14    P
## 98         98          98     P  15   16  15   15    P
## 99         99          99     P  16   17  16   16    P
## 100       100         100     P  17   18  17   17    P
## 101       101         101     P  18   19  18   18    P
## 102       102         102     P  19   20  19   19    P
## 103       103         103     P  20   21  20   20    P
## 104       104         104     P  21   22  21   21    P
## 105       105         105     P  22   23  22   22    P
## 106       106         106     P  23   24  23   23    P
## 107       107         107     P  24   25  24   24    P
## 108       108         108     P  25   26  25   25    P
## 109       109         109     P  26   27  26   26    P
## 110       110         110     P  27   28  27   27    P
## 111       111         111     P  28   29  28   28    P
## 112       112         112     P  29   30  29   29    P
## 113       113         113     P  30   31  30   30    P
## 114       114         114     P  31   32  31   31    P
## 115       115         115     P  32   33  32   32    P
## 116       116         116     P  33   34  33   33    P
## 117       117         117     P  34   35  34   34    P
## 118       118         118     P  35   36  35   35    P
## 119       119         119     P  36   37  36   36    P
## 120       120         120     P  37   38  37   37    P
## 121       121         121     P  38   39  38   38    P
## 122       122         122     P  39   40  39   39    P
## 123       123         123     P  40   41  40   40    P
## 124       124         124     P  41   42  41   41    P
## 125       125         125     P  42   43  42   42    P
## 126       126         126     P  43   44  43   43    P
## 127       127         127     P  44   45  44   44    P
## 128       128         128     P  45   46  45   45    P
## 129       129         129     P  46   47  46   46    P
## 130       130         130     P  47   48  47   47    P
## 131       131         131     P  48   49  48   48    P
## 132       132         132     P  49   50  49   49    P
## 133       133         133     P  50   51  50   50    P
## 134       134         134     P  51   52  51   51    P
## 135       135         135     P  52   53  52   52    P
## 136       136         136     P  53   54  53   53    P
## 137       137         137     P  54   55  54   54    P
## 138       138         138     P  55   56  55   55    P
## 139       139         139     P  56   57  56   56    P
## 140       140         140     P  57   58  57   57    P
## 141       141         141     P  58   59  58   58    P
## 142       142         142     P  59   60  59   59    P
## 143       143         143     P  60   61  60   60    P
## 144       144         144     P  61   62  61   61    P
## 145       145         145     P  62   63  62   62    P
## 146       146         146     P  63   64  63   63    P
## 147       147         147     P  64   65  64   64    P
## 148       148         148     P  65   66  65   65    P
## 149       149         149     P  66   67  66   66    P
## 150       150         150     P  67   68  67   67    P
## 151       151         151     P  68   69  68   68    P
## 152       152         152     P  69   70  69   69    P
## 153       153         153     P  70   71  70   70    P
## 154       154         154     P  71   72  71   71    P
## 155       155         155     P  72   73  72   72    P
## 156       156         156     P  73   74  73   73    P
## 157       157         157     P  74   75  74   74    P
## 158       158         158     P  75   76  75   75    P
## 159       159         159     P  76   77  76   76    P
## 160       160         160     P  77   78  77   77    P
## 161       161         161     P  78   79  78   78    P
## 162       162         162     P  79   80  79   79    P
## 163       163         163     P  80   81  80   80    P
## 164       164         164     P  81   82  81   81    P
pred.p <- covariate.predictions(mod.fit, indices=1, data=Temp.df)
head(pred.p$estimates)
##   vcv.index model.index par.index covdata   estimate         se        lcl
## 1         1           1         1       0 0.09698169 0.04867688 0.03487010
## 2         2           1         1       1 0.10152121 0.04804946 0.03868274
## 3         3           1         1       2 0.10624820 0.04730143 0.04286171
## 4         4           1         1       3 0.11116807 0.04643474 0.04742818
## 5         5           1         1       4 0.11628610 0.04545448 0.05239989
## 6         6           1         1       5 0.12160753 0.04436974 0.05778932
##         ucl fixed
## 1 0.2419886      
## 2 0.2408620      
## 3 0.2398812      
## 4 0.2390708      
## 5 0.2384618      
## 6 0.2380928
plotdata <- cbind(Temp.df, pred.p$estimates)
head(plotdata)
##   Temp1 vcv.index model.index par.index covdata   estimate         se
## 1     0         1           1         1       0 0.09698169 0.04867688
## 2     1         2           1         1       1 0.10152121 0.04804946
## 3     2         3           1         1       2 0.10624820 0.04730143
## 4     3         4           1         1       3 0.11116807 0.04643474
## 5     4         5           1         1       4 0.11628610 0.04545448
## 6     5         6           1         1       5 0.12160753 0.04436974
##          lcl       ucl fixed
## 1 0.03487010 0.2419886      
## 2 0.03868274 0.2408620      
## 3 0.04286171 0.2398812      
## 4 0.04742818 0.2390708      
## 5 0.05239989 0.2384618      
## 6 0.05778932 0.2380928
ggplot(data=plotdata, aes(x=Temp1, y=estimate))+
      ggtitle("Detection probability as a function of temperature")+
      geom_point()+
      geom_ribbon(aes(ymin=lcl, ymax=ucl), alpha=.2)+
      ylim(0,1)

# covariate predictions for categorical covariates
# Occupancy predictions for different pond types
amtoad.ddl$Psi
##   par.index model.index group age time Age Time Pond
## 1         1         165     E   0    1   0    0    E
## 2         2         166     P   0    1   0    0    P
fit.psi = tail(mod.fit$results$real,2)
fit.psi$pond = c("E","P")
fit.psi
##               estimate        se       lcl       ucl fixed    note pond
## Psi gE a0 t1 0.3621312 0.1433915 0.1439550 0.6571389                  E
## Psi gP a0 t1 0.7906226 0.2510265 0.1619883 0.9866246                  P
ggplot(data=fit.psi, aes(x=pond, y=estimate))+
  geom_point()+
  geom_errorbar(aes(ymin=lcl, 
                    ymax=ucl, width=0.2))+
  ylim(0,1)

# cleanup
cleanup(ask=FALSE)