# Single Species Single Season Occupancy models
# Goodness of fit for the gross beak example
# unmarked package
library(readxl)
library(unmarked)
## Loading required package: reshape
## Loading required package: lattice
## Loading required package: parallel
## Loading required package: Rcpp
library(ggplot2)
# get the data read in
# Data for detections should be a data frame with rows corresponding to sites
# and columns to visits.
# The usual 1=detected; 0=not detected; NA=not visited is used.
input.data <- read.csv(file.path("..","blgr.csv"),
header=TRUE, as.is=TRUE, strip.white=TRUE)
head(input.data)
## field v1 v2 v3 field.size bqi crop.hist crop1 crop2 count1 count2 count3
## 1 1 1 1 1 14.0 1 crop 1 0 1 2 2
## 2 2 1 1 0 12.7 1 crop 1 0 2 2 0
## 3 3 0 0 0 15.7 0 grass 0 1 0 0 0
## 4 4 0 1 0 19.5 0 grass 0 1 0 2 0
## 5 5 1 0 1 13.5 0 crop 1 0 1 0 1
## 6 6 0 0 1 9.6 0 mixed 0 1 0 0 2
## X logFS
## 1 NA 1.1461280
## 2 NA 1.1038037
## 3 NA 1.1958997
## 4 NA 1.2900346
## 5 NA 1.1303338
## 6 NA 0.9822712
# do some basic checks on your data
# e.g. check number of sites; number of visits etc
nrow(input.data)
## [1] 41
range(input.data[, c("v1","v2","v3")], na.rm=TRUE)
## [1] 0 1
sum(is.na(input.data[, c("v1","v2","v3")]))
## [1] 0
input.history <- input.data[, c("v1","v2","v3")]
head(input.history)
## v1 v2 v3
## 1 1 1 1
## 2 1 1 0
## 3 0 0 0
## 4 0 1 0
## 5 1 0 1
## 6 0 0 1
# Create the data structore for the occupancy model
# unmarked does not have any reserved keywords like RPresence so
# we need to construct a covariate data frame with the covariates
# again stacked. The ordering is different in unmarked.
# Here you want for site 1, the visit specific covariates, then
# for site 2, etc.
# This needs to be added to the unmarked dataframe.
# We also want to set up covariate values where we
# set the detection probability equal in first 2 occasions and last 3 occasions.
# We need to define a survey covariate that has two levels
obs.covar <- data.frame( Site=rep(1:nrow(input.history), each=ncol(input.history)),
Visit=rep(1:ncol(input.history), nrow(input.history)),
Time =rep(c("T1","T2","T3"), nrow(input.history)))
obs.covar[1:10,]
## Site Visit Time
## 1 1 1 T1
## 2 1 2 T2
## 3 1 3 T3
## 4 2 1 T1
## 5 2 2 T2
## 6 2 3 T3
## 7 3 1 T1
## 8 3 2 T2
## 9 3 3 T3
## 10 4 1 T1
grossbeak.UMF <- unmarked::unmarkedFrameOccu(
y = input.history,
obsCovs=obs.covar)
summary(grossbeak.UMF)
## unmarkedFrame Object
##
## 41 sites
## Maximum number of observations per site: 3
## Mean number of observations per site: 3
## Sites with at least one detection: 33
##
## Tabulation of y observations:
## 0 1
## 63 60
##
## Observation-level covariates:
## Site Visit Time
## Min. : 1 Min. :1 T1:41
## 1st Qu.:11 1st Qu.:1 T2:41
## Median :21 Median :2 T3:41
## Mean :21 Mean :2
## 3rd Qu.:31 3rd Qu.:3
## Max. :41 Max. :3
plot(grossbeak.UMF)

# Fit some models.
# Note that formula DO NOT HAVE AN = SIGN
# The two formula are for detecton and occupancy in that order
mod.pdot.u <- unmarked::occu(~1 ~1 , data=grossbeak.UMF, se=TRUE)
# This creates a complicated S4 object with SLOTS that can be accessed using various
# functions. This is more complcated than with RPresence
slotNames(mod.pdot.u)
## [1] "knownOcc" "fitType" "call"
## [4] "formula" "data" "sitesRemoved"
## [7] "estimates" "AIC" "opt"
## [10] "negLogLike" "nllFun" "bootstrapSamples"
## [13] "covMatBS"
# These functions return estimates on the LOGIT scale - not very useful for most people
coef(mod.pdot.u, type="state")
## psi(Int)
## 2.038689
SE(mod.pdot.u, type="state")
## psi(Int)
## 0.7514124
confint(mod.pdot.u, type="state")
## 0.025 0.975
## psi(Int) 0.5659481 3.511431
# It is possible to use backTransform() but only if NO covariates
backTransform(mod.pdot.u, type='state')
## Backtransformed linear combination(s) of Occupancy estimate(s)
##
## Estimate SE LinComb (Intercept)
## 0.885 0.0766 2.04 1
##
## Transformation: logistic
# better to use predict() to do the estimation.
# Because there are no covariates here, the data.frame is empty
newdata <- data.frame(factor=1:1)
predict(mod.pdot.u, type='state', newdata=newdata)
## Predicted SE lower upper
## 1 0.8847998 0.07659083 0.6378277 0.9710113
# Ditto for the detection probability
coef(mod.pdot.u, type="det")
## p(Int)
## 0.2059922
SE(mod.pdot.u, type="det")
## p(Int)
## 0.2420584
confint(mod.pdot.u, type="det")
## 0.025 0.975
## p(Int) -0.2684335 0.680418
backTransform(mod.pdot.u, type="det")
## Backtransformed linear combination(s) of Detection estimate(s)
##
## Estimate SE LinComb (Intercept)
## 0.551 0.0599 0.206 1
##
## Transformation: logistic
predict(mod.pdot.u, type='det', newdata=newdata)
## Predicted SE lower upper
## 1 0.5513167 0.05987716 0.4332917 0.663832
# Look at the posterior probability of detection
# The best unbiased predictor of the posterior probability of detection
bup(ranef(mod.pdot.u))
## [1] 1.0000000 1.0000000 0.4095987 1.0000000 1.0000000 1.0000000 1.0000000
## [8] 1.0000000 1.0000000 1.0000000 1.0000000 0.4095987 0.4095987 1.0000000
## [15] 1.0000000 1.0000000 1.0000000 0.4095987 1.0000000 0.4095987 1.0000000
## [22] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
## [29] 1.0000000 1.0000000 0.4095987 1.0000000 1.0000000 1.0000000 0.4095987
## [36] 0.4095987 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
# Model where p(t) varies across survey occasions
#
# Note that formula DO NOT HAVE AN = SIGN
# The two formula are for detecton and occupancy in that order
mod.pt.u <- unmarked::occu(~Time ~1 , data=grossbeak.UMF, se=TRUE)
# This creates a complicated S4 object with SLOTS that can be accessed using various
# functions. This is more complcated than with RPresence
# These functions return estimates on the LOGIT scale - not very useful for most people
# better to use predict() to do the estimation.
# Because there are no covariates here, the data.frame is empty
newdata <- data.frame(Time=c("T1","T2","T3"), stringsAsFactors=FALSE)
predict(mod.pt.u, type='state', newdata=newdata)[1,]
## Predicted SE lower upper
## 1 0.8827113 0.07618458 0.640172 0.9695459
# Ditto for the detection probability
cbind(newdata, predict(mod.pt.u, type='det', newdata=newdata))
## Time Predicted SE lower upper
## 1 T1 0.4973591 0.08915451 0.3297001 0.6656141
## 2 T2 0.6078831 0.09022850 0.4247031 0.7650092
## 3 T3 0.5526210 0.09009099 0.3768490 0.7161568
# Look at the posterior probability of detection
# The best unbiased predictor of the posterior probability of detection
bup(ranef(mod.pt.u))
## [1] 1.0000000 1.0000000 0.3988967 1.0000000 1.0000000 1.0000000 1.0000000
## [8] 1.0000000 1.0000000 1.0000000 1.0000000 0.3988967 0.3988967 1.0000000
## [15] 1.0000000 1.0000000 1.0000000 0.3988967 1.0000000 0.3988967 1.0000000
## [22] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
## [29] 1.0000000 1.0000000 0.3988967 1.0000000 1.0000000 1.0000000 0.3988967
## [36] 0.3988967 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
sum(bup(ranef(mod.pt.u)))
## [1] 36.19117
# Model averaging
models.u <-unmarked::fitList(mod.pdot.u, mod.pt.u)
## Warning in unmarked::fitList(mod.pdot.u, mod.pt.u): Your list was unnamed,
## so model names were added as object names
aic.table.u <- unmarked::modSel(models.u)
aic.table.u
## nPars AIC delta AICwt cumltvWt
## mod.pdot.u 2 172.19 0.00 0.83 0.83
## mod.pt.u 4 175.30 3.11 0.17 1.00
# Get model averaged estimates of occupancy
predict(models.u, type="state")[1,]
## Predicted SE lower upper
## 1 0.8844349 0.07652398 0.6382373 0.9707553
# Get model averaged estimates of detection.
# Notice these are one big list of nsites x nvisits long
# with the detection probabilities for each site
cbind(obs.covar, predict(models.u, type="det"))[1:10,]
## Site Visit Time Predicted SE lower upper
## 1 1 1 T1 0.5418900 0.06743558 0.4151937 0.6641433
## 2 1 2 T2 0.5611992 0.06783319 0.4317912 0.6815082
## 3 1 3 T3 0.5515446 0.06515716 0.4234308 0.6729734
## 4 2 1 T1 0.5418900 0.06743558 0.4151937 0.6641433
## 5 2 2 T2 0.5611992 0.06783319 0.4317912 0.6815082
## 6 2 3 T3 0.5515446 0.06515716 0.4234308 0.6729734
## 7 3 1 T1 0.5418900 0.06743558 0.4151937 0.6641433
## 8 3 2 T2 0.5611992 0.06783319 0.4317912 0.6815082
## 9 3 3 T3 0.5515446 0.06515716 0.4234308 0.6729734
## 10 4 1 T1 0.5418900 0.06743558 0.4151937 0.6641433
# Do we need to worry about lack of it
# See https://groups.google.com/forum/#!searchin/unmarked/goodness$20of$20fit%7Csort:date/unmarked/3wvnDyLlxok/ct1U723vCAAJ
# https://www.rdocumentation.org/packages/AICcmodavg/versions/2.1-1/topics/mb.gof.test
# MacKenzie, D. I., Bailey, L. L. (2004) Assessing the fit of site-occupancy models. Journal of Agricultural, Biological, and Environmental Statistics 9, 300--318.
library(AICcmodavg)
# Mackenzie Bailey Goodness of fit test
# compute chi-square for the top model
mod.pdot.u.chi = mb.chisq(mod.pdot.u)
mod.pdot.u.chi
##
## MacKenzie and Bailey goodness-of-fit for single-season occupancy model
##
## Pearson chi-square table:
##
## Cohort Observed Expected Chi-square
## 000 0 8 8.00 0.00
## 001 0 6 4.03 0.97
## 010 0 5 4.03 0.24
## 011 0 4 4.95 0.18
## 100 0 3 4.03 0.26
## 101 0 2 4.95 1.76
## 110 0 5 4.95 0.00
## 111 0 8 6.08 0.61
##
## Chi-square statistic = 4.0094
mod.pdot.u.boot = mb.gof.test(mod.pdot.u, nsim = 100) # should do about 1000 sims

print(mod.pdot.u.boot, digit.vals=4, digits.chisq=4)
##
## MacKenzie and Bailey goodness-of-fit for single-season occupancy model
##
## Pearson chi-square table:
##
## Cohort Observed Expected Chi-square
## 000 0 8 8.00 0.00
## 001 0 6 4.03 0.97
## 010 0 5 4.03 0.24
## 011 0 4 4.95 0.18
## 100 0 3 4.03 0.26
## 101 0 2 4.95 1.76
## 110 0 5 4.95 0.00
## 111 0 8 6.08 0.61
##
## Chi-square statistic = 4.0094
## Number of bootstrap samples = 100
## P-value = 0.6
##
## Quantiles of bootstrapped statistics:
## 0% 25% 50% 75% 100%
## 0.68 3.11 4.63 7.01 17.32
##
## Estimate of c-hat = 0.74
# estimating chat
names(mod.pdot.u.boot)
## [1] "model.type" "chisq.table" "chi.square" "t.star" "p.value"
## [6] "c.hat.est" "nsim"
chat <- mod.pdot.u.boot$c.hat.est
chat
## [1] 0.7407513
# Not possible to insert chat in the unmarked::modSel (groan) so we use te aictab from AICmodavg
AICcmodavg::aictab(list(mod.pdot.u, mod.pt.u, mod.pdot.u) )
## Warning in aictab.AICunmarkedFitOccu(list(mod.pdot.u, mod.pt.u, mod.pdot.u)):
## Model names have been supplied automatically in the table
## Warning in aictab.AICunmarkedFitOccu(list(mod.pdot.u, mod.pt.u, mod.pdot.u)):
## Check model structure carefully as some models may be redundant
##
## Model selection based on AICc:
##
## K AICc Delta_AICc AICcWt Cum.Wt LL
## Mod3 2 172.51 0.0 0.47 0.47 -84.09
## Mod1 2 172.51 0.0 0.47 0.93 -84.09
## Mod2 4 176.41 3.9 0.07 1.00 -83.65
AICcmodavg::aictab(list(mod.pdot.u, mod.pt.u, mod.pdot.u), c.hat=max(1,chat) )
## Warning in aictab.AICunmarkedFitOccu(list(mod.pdot.u, mod.pt.u, mod.pdot.u), :
## Model names have been supplied automatically in the table
## Warning in aictab.AICunmarkedFitOccu(list(mod.pdot.u, mod.pt.u, mod.pdot.u), :
## Check model structure carefully as some models may be redundant
##
## Model selection based on AICc:
##
## K AICc Delta_AICc AICcWt Cum.Wt LL
## Mod3 2 172.51 0.0 0.47 0.47 -84.09
## Mod1 2 172.51 0.0 0.47 0.93 -84.09
## Mod2 4 176.41 3.9 0.07 1.00 -83.65
# The bootstrap goodness of fit can also be done directly in umarked by defining
# our own statistics.
# Function returning three fit-statistics.
fitstats <- function(fm) {
observed <- getY(fm@data)
expected <- fitted(fm)
resids <- residuals(fm)
sse <- sum(resids^2)
chisq <- sum((observed - expected)^2 / expected)
freeTuke <- sum((sqrt(observed) - sqrt(expected))^2)
out <- c(SSE=sse, Chisq=chisq, freemanTukey=freeTuke)
return(out)
}
mod.pdot.u.pboot <- unmarked::parboot(mod.pdot.u, fitstats, nsim=99, report=100)
## t0 = 30.73171 63 36.18837
mod.pdot.u.pboot@t0
## SSE Chisq freemanTukey
## 30.73171 63.00000 36.18837
head(mod.pdot.u.pboot@t.star)
## SSE Chisq freemanTukey
## [1,] 30.74797 60.99979 35.96312
## [2,] 28.53659 45.00001 31.77204
## [3,] 30.40650 68.00089 36.44319
## [4,] 30.50407 67.01427 36.42437
## [5,] 30.58537 57.00024 35.30730
## [6,] 27.96748 79.99719 35.15189
# How extreme is t0 relative to the bootstrap values.
# Small probabilities indicate lack of fit
colMeans(mod.pdot.u.pboot@t.star > matrix(mod.pdot.u.pboot@t0, byrow=TRUE,
ncol=length(mod.pdot.u.pboot@t0),
nrow=nrow(mod.pdot.u.pboot@t.star)))
## SSE Chisq freemanTukey
## 0.2323232 0.4444444 0.3838384
# No easy way to automatically inflate the se and ci using c.hat in the unmarked package