# Example using model averaging on the pronghorn dataset
# 256 sites, two sampling occasions per site
# Covariates used in this example:
# 1. sagebrush (continuos) - Sagebrush density
# 2. aspect (Categorical) - Compass direction slope faces (N,S,E,W)
# 2018-11-26 Code contributed by Neil Faught
# RPresence package
library(readxl)
library(RPresence)
## Warning: package 'RPresence' was built under R version 3.5.0
library(ggplot2)
# get the data read in
# Data for detections should be a data frame with rows corresponding to sites
# and columns to visits.
# The usual 1=detected; 0=not detected; NA=not visited is used.
input.data<-read.csv(file.path("..","pronghorn.csv"), header=TRUE, as.is=TRUE, strip.white=TRUE)
head(input.data)
## Plot Survey.1 Survey.2 sagebrush slope DW aspect
## 1 1 0 0 9.0 0 25 W
## 2 2 0 1 18.0 5 150 S
## 3 3 0 0 8.4 45 150 W
## 4 4 0 0 3.2 65 375 E
## 5 5 0 1 12.0 5 375 S
## 6 6 1 1 7.8 5 150 S
input.history <- input.data[,c(2,3)] # the history extracted
head(input.history)
## Survey.1 Survey.2
## 1 0 0
## 2 0 1
## 3 0 0
## 4 0 0
## 5 0 1
## 6 1 1
# do some basic checks on your data
# e.g. check number of sites; number of visits etc
nrow(input.history)
## [1] 256
ncol(input.history)
## [1] 2
range(input.history, na.rm=TRUE) # check that all values are either 0 or 1
## [1] 0 1
sum(is.na(input.history)) # are there any missing values?
## [1] 0
# Get the sagebrush and aspect information. These are the covariates that will
# be used in the analysis. These are unit-level covariates.
unit.cov = input.data[,c(4,7)]
head(unit.cov)
## sagebrush aspect
## 1 9.0 W
## 2 18.0 S
## 3 8.4 W
## 4 3.2 E
## 5 12.0 S
## 6 7.8 S
# Create the *.pao file
prong.pao <- RPresence::createPao(input.history,
unitcov=unit.cov,
title='Pronghorn SSSS')
prong.pao
## $nunits
## [1] 256
##
## $nsurveys
## [1] 2
##
## $nseasons
## [1] 1
##
## $nmethods
## [1] 1
##
## $det.data
## Survey.1 Survey.2
## 1 0 0
## 2 0 1
## 3 0 0
## 4 0 0
## 5 0 1
## 6 1 1
## 7 0 0
## 8 1 0
## 9 1 0
## 10 1 1
## 11 0 0
## 12 1 1
## 13 0 0
## 14 1 1
## 15 0 0
## 16 0 1
## 17 0 0
## 18 1 0
## 19 0 0
## 20 0 0
## 21 1 0
## 22 0 1
## 23 0 0
## 24 0 0
## 25 1 0
## 26 0 0
## 27 0 0
## 28 1 0
## 29 1 1
## 30 1 0
## 31 0 0
## 32 1 0
## 33 0 1
## 34 0 1
## 35 0 1
## 36 0 1
## 37 1 0
## 38 1 0
## 39 0 0
## 40 0 0
## 41 1 1
## 42 0 1
## 43 1 1
## 44 0 0
## 45 0 1
## 46 0 0
## 47 0 0
## 48 0 0
## 49 0 1
## 50 0 1
## 51 1 1
## 52 0 0
## 53 0 1
## 54 0 1
## 55 0 0
## 56 0 0
## 57 0 0
## 58 0 0
## 59 0 1
## 60 1 0
## 61 1 0
## 62 1 1
## 63 0 0
## 64 0 1
## 65 1 0
## 66 0 1
## 67 0 0
## 68 0 0
## 69 0 1
## 70 0 1
## 71 0 0
## 72 1 0
## 73 0 1
## 74 1 0
## 75 0 0
## 76 1 1
## 77 0 1
## 78 0 0
## 79 1 1
## 80 0 1
## 81 1 0
## 82 1 1
## 83 1 1
## 84 0 0
## 85 1 1
## 86 0 0
## 87 0 0
## 88 0 0
## 89 0 0
## 90 0 0
## 91 0 0
## 92 0 0
## 93 0 0
## 94 0 0
## 95 0 0
## 96 0 0
## 97 1 1
## 98 0 0
## 99 1 1
## 100 0 1
## 101 0 1
## 102 0 1
## 103 0 0
## 104 0 1
## 105 1 1
## 106 0 0
## 107 0 0
## 108 0 1
## 109 0 1
## 110 1 1
## 111 1 0
## 112 1 1
## 113 1 0
## 114 1 1
## 115 1 1
## 116 0 0
## 117 1 1
## 118 0 0
## 119 0 1
## 120 0 0
## 121 0 0
## 122 1 1
## 123 0 1
## 124 0 0
## 125 0 0
## 126 0 0
## 127 0 0
## 128 0 0
## 129 1 1
## 130 0 0
## 131 0 0
## 132 1 0
## 133 0 0
## 134 0 0
## 135 0 1
## 136 1 0
## 137 0 0
## 138 1 1
## 139 0 0
## 140 0 0
## 141 0 0
## 142 1 0
## 143 0 1
## 144 0 0
## 145 1 0
## 146 0 1
## 147 0 0
## 148 1 0
## 149 0 1
## 150 1 1
## 151 1 1
## 152 1 1
## 153 0 0
## 154 0 0
## 155 0 1
## 156 0 0
## 157 0 0
## 158 0 0
## 159 0 1
## 160 1 1
## 161 0 0
## 162 0 0
## 163 1 1
## 164 0 0
## 165 0 1
## 166 0 0
## 167 1 0
## 168 0 0
## 169 1 1
## 170 0 1
## 171 1 0
## 172 1 0
## 173 0 1
## 174 0 0
## 175 0 0
## 176 1 1
## 177 0 1
## 178 0 0
## 179 0 1
## 180 0 0
## 181 1 1
## 182 0 0
## 183 0 0
## 184 0 1
## 185 1 1
## 186 0 0
## 187 0 0
## 188 0 0
## 189 0 1
## 190 1 0
## 191 0 0
## 192 0 1
## 193 0 0
## 194 0 0
## 195 0 0
## 196 0 0
## 197 0 0
## 198 0 1
## 199 0 1
## 200 1 1
## 201 0 1
## 202 0 1
## 203 0 0
## 204 0 0
## 205 0 0
## 206 0 1
## 207 0 1
## 208 0 0
## 209 0 0
## 210 0 0
## 211 0 0
## 212 1 0
## 213 0 0
## 214 1 0
## 215 1 0
## 216 0 0
## 217 0 0
## 218 0 0
## 219 0 0
## 220 0 0
## 221 0 0
## 222 0 0
## 223 0 1
## 224 0 0
## 225 1 1
## 226 1 0
## 227 0 0
## 228 1 0
## 229 0 0
## 230 0 0
## 231 1 1
## 232 0 0
## 233 0 1
## 234 0 1
## 235 0 1
## 236 1 1
## 237 0 0
## 238 0 0
## 239 0 0
## 240 0 0
## 241 0 0
## 242 0 0
## 243 1 0
## 244 0 0
## 245 0 0
## 246 0 1
## 247 0 0
## 248 0 0
## 249 0 0
## 250 0 0
## 251 1 0
## 252 0 1
## 253 0 0
## 254 0 0
## 255 0 0
## 256 0 0
##
## $nunitcov
## [1] 2
##
## $unitcov
## sagebrush aspect
## 1 9.0 W
## 2 18.0 S
## 3 8.4 W
## 4 3.2 E
## 5 12.0 S
## 6 7.8 S
## 7 5.4 N
## 8 10.0 N
## 9 12.0 S
## 10 12.0 S
## 11 0.6 E
## 12 7.6 N
## 13 4.2 S
## 14 12.0 S
## 15 8.2 S
## 16 4.0 E
## 17 10.0 W
## 18 4.0 W
## 19 3.4 E
## 20 6.4 W
## 21 4.0 W
## 22 7.8 W
## 23 10.0 W
## 24 10.0 W
## 25 3.8 N
## 26 1.2 S
## 27 2.0 W
## 28 5.8 S
## 29 7.4 N
## 30 7.2 S
## 31 4.0 S
## 32 18.0 W
## 33 1.6 S
## 34 3.4 W
## 35 0.8 N
## 36 5.9 N
## 37 0.2 S
## 38 12.0 S
## 39 9.0 S
## 40 2.0 W
## 41 9.2 N
## 42 6.2 W
## 43 0.2 W
## 44 7.4 S
## 45 3.2 E
## 46 2.2 W
## 47 9.6 E
## 48 13.0 W
## 49 11.0 W
## 50 2.6 W
## 51 4.8 W
## 52 6.6 W
## 53 16.0 W
## 54 12.0 W
## 55 3.0 S
## 56 0.7 W
## 57 3.0 W
## 58 2.6 W
## 59 5.4 E
## 60 5.6 S
## 61 3.8 W
## 62 0.0 W
## 63 0.4 E
## 64 1.4 S
## 65 0.4 E
## 66 4.8 W
## 67 5.6 S
## 68 0.2 S
## 69 3.9 W
## 70 10.0 W
## 71 4.2 W
## 72 0.2 S
## 73 0.2 W
## 74 5.0 S
## 75 5.4 W
## 76 3.4 N
## 77 10.0 W
## 78 0.4 W
## 79 4.8 S
## 80 7.2 N
## 81 6.6 W
## 82 1.6 W
## 83 4.2 N
## 84 5.0 S
## 85 3.4 S
## 86 0.8 W
## 87 0.8 S
## 88 8.0 N
## 89 0.2 N
## 90 10.0 W
## 91 0.2 W
## 92 4.2 N
## 93 7.0 N
## 94 2.4 N
## 95 10.0 W
## 96 7.8 W
## 97 12.0 N
## 98 3.2 W
## 99 1.0 S
## 100 5.4 W
## 101 11.0 W
## 102 0.8 W
## 103 3.6 E
## 104 5.4 S
## 105 9.0 W
## 106 2.0 W
## 107 0.6 W
## 108 4.2 W
## 109 1.8 W
## 110 4.4 W
## 111 0.2 N
## 112 0.2 S
## 113 3.8 W
## 114 0.2 W
## 115 0.4 W
## 116 7.2 W
## 117 9.4 W
## 118 0.2 W
## 119 4.0 W
## 120 3.6 E
## 121 2.4 W
## 122 5.0 W
## 123 1.4 W
## 124 8.2 W
## 125 7.4 E
## 126 2.0 W
## 127 0.4 W
## 128 4.4 W
## 129 0.2 N
## 130 3.6 W
## 131 2.4 W
## 132 10.0 W
## 133 8.4 W
## 134 0.0 S
## 135 4.0 W
## 136 4.8 S
## 137 1.4 W
## 138 0.0 W
## 139 2.4 N
## 140 3.4 W
## 141 3.0 W
## 142 5.0 W
## 143 0.0 E
## 144 8.4 W
## 145 7.6 W
## 146 0.2 W
## 147 2.8 W
## 148 3.4 W
## 149 2.4 S
## 150 1.0 E
## 151 2.2 W
## 152 0.4 W
## 153 1.6 E
## 154 7.6 W
## 155 0.4 W
## 156 0.6 W
## 157 5.6 W
## 158 14.0 W
## 159 3.6 W
## 160 2.2 W
## 161 6.6 W
## 162 11.0 S
## 163 3.0 E
## 164 3.4 W
## 165 12.0 W
## 166 10.0 S
## 167 3.8 N
## 168 0.4 W
## 169 12.0 N
## 170 1.0 W
## 171 0.4 W
## 172 1.2 W
## 173 6.0 W
## 174 6.2 N
## 175 3.0 S
## 176 0.4 W
## 177 2.0 W
## 178 1.2 E
## 179 0.0 W
## 180 0.4 W
## 181 0.2 W
## 182 10.0 S
## 183 7.2 W
## 184 6.2 W
## 185 0.2 W
## 186 1.8 W
## 187 7.2 S
## 188 4.8 E
## 189 3.2 N
## 190 3.4 W
## 191 0.2 E
## 192 4.0 W
## 193 4.0 W
## 194 6.0 S
## 195 0.6 W
## 196 1.0 W
## 197 2.0 W
## 198 0.2 W
## 199 2.6 W
## 200 2.8 W
## 201 6.1 E
## 202 3.0 W
## 203 6.2 W
## 204 4.0 W
## 205 6.0 W
## 206 0.8 N
## 207 0.2 W
## 208 1.8 W
## 209 8.0 W
## 210 0.2 W
## 211 2.2 E
## 212 6.6 W
## 213 2.6 S
## 214 6.6 E
## 215 0.0 W
## 216 1.0 W
## 217 0.4 W
## 218 9.2 N
## 219 3.2 W
## 220 1.4 W
## 221 6.2 W
## 222 6.0 E
## 223 6.4 W
## 224 1.0 W
## 225 0.2 N
## 226 1.0 W
## 227 0.0 W
## 228 3.2 W
## 229 0.2 E
## 230 2.0 N
## 231 1.4 E
## 232 0.0 W
## 233 0.0 W
## 234 0.0 W
## 235 1.4 S
## 236 0.2 E
## 237 0.0 W
## 238 0.6 S
## 239 0.0 S
## 240 2.4 W
## 241 1.6 E
## 242 2.2 S
## 243 1.1 W
## 244 3.2 W
## 245 0.0 W
## 246 1.8 E
## 247 4.2 E
## 248 0.8 W
## 249 5.2 E
## 250 0.2 E
## 251 0.0 W
## 252 6.4 W
## 253 3.4 W
## 254 1.8 W
## 255 0.4 W
## 256 0.4 W
##
## $nsurvcov
## [1] 1
##
## $survcov
## SURVEY
## 1 1
## 2 1
## 3 1
## 4 1
## 5 1
## 6 1
## 7 1
## 8 1
## 9 1
## 10 1
## 11 1
## 12 1
## 13 1
## 14 1
## 15 1
## 16 1
## 17 1
## 18 1
## 19 1
## 20 1
## 21 1
## 22 1
## 23 1
## 24 1
## 25 1
## 26 1
## 27 1
## 28 1
## 29 1
## 30 1
## 31 1
## 32 1
## 33 1
## 34 1
## 35 1
## 36 1
## 37 1
## 38 1
## 39 1
## 40 1
## 41 1
## 42 1
## 43 1
## 44 1
## 45 1
## 46 1
## 47 1
## 48 1
## 49 1
## 50 1
## 51 1
## 52 1
## 53 1
## 54 1
## 55 1
## 56 1
## 57 1
## 58 1
## 59 1
## 60 1
## 61 1
## 62 1
## 63 1
## 64 1
## 65 1
## 66 1
## 67 1
## 68 1
## 69 1
## 70 1
## 71 1
## 72 1
## 73 1
## 74 1
## 75 1
## 76 1
## 77 1
## 78 1
## 79 1
## 80 1
## 81 1
## 82 1
## 83 1
## 84 1
## 85 1
## 86 1
## 87 1
## 88 1
## 89 1
## 90 1
## 91 1
## 92 1
## 93 1
## 94 1
## 95 1
## 96 1
## 97 1
## 98 1
## 99 1
## 100 1
## 101 1
## 102 1
## 103 1
## 104 1
## 105 1
## 106 1
## 107 1
## 108 1
## 109 1
## 110 1
## 111 1
## 112 1
## 113 1
## 114 1
## 115 1
## 116 1
## 117 1
## 118 1
## 119 1
## 120 1
## 121 1
## 122 1
## 123 1
## 124 1
## 125 1
## 126 1
## 127 1
## 128 1
## 129 1
## 130 1
## 131 1
## 132 1
## 133 1
## 134 1
## 135 1
## 136 1
## 137 1
## 138 1
## 139 1
## 140 1
## 141 1
## 142 1
## 143 1
## 144 1
## 145 1
## 146 1
## 147 1
## 148 1
## 149 1
## 150 1
## 151 1
## 152 1
## 153 1
## 154 1
## 155 1
## 156 1
## 157 1
## 158 1
## 159 1
## 160 1
## 161 1
## 162 1
## 163 1
## 164 1
## 165 1
## 166 1
## 167 1
## 168 1
## 169 1
## 170 1
## 171 1
## 172 1
## 173 1
## 174 1
## 175 1
## 176 1
## 177 1
## 178 1
## 179 1
## 180 1
## 181 1
## 182 1
## 183 1
## 184 1
## 185 1
## 186 1
## 187 1
## 188 1
## 189 1
## 190 1
## 191 1
## 192 1
## 193 1
## 194 1
## 195 1
## 196 1
## 197 1
## 198 1
## 199 1
## 200 1
## 201 1
## 202 1
## 203 1
## 204 1
## 205 1
## 206 1
## 207 1
## 208 1
## 209 1
## 210 1
## 211 1
## 212 1
## 213 1
## 214 1
## 215 1
## 216 1
## 217 1
## 218 1
## 219 1
## 220 1
## 221 1
## 222 1
## 223 1
## 224 1
## 225 1
## 226 1
## 227 1
## 228 1
## 229 1
## 230 1
## 231 1
## 232 1
## 233 1
## 234 1
## 235 1
## 236 1
## 237 1
## 238 1
## 239 1
## 240 1
## 241 1
## 242 1
## 243 1
## 244 1
## 245 1
## 246 1
## 247 1
## 248 1
## 249 1
## 250 1
## 251 1
## 252 1
## 253 1
## 254 1
## 255 1
## 256 1
## 257 2
## 258 2
## 259 2
## 260 2
## 261 2
## 262 2
## 263 2
## 264 2
## 265 2
## 266 2
## 267 2
## 268 2
## 269 2
## 270 2
## 271 2
## 272 2
## 273 2
## 274 2
## 275 2
## 276 2
## 277 2
## 278 2
## 279 2
## 280 2
## 281 2
## 282 2
## 283 2
## 284 2
## 285 2
## 286 2
## 287 2
## 288 2
## 289 2
## 290 2
## 291 2
## 292 2
## 293 2
## 294 2
## 295 2
## 296 2
## 297 2
## 298 2
## 299 2
## 300 2
## 301 2
## 302 2
## 303 2
## 304 2
## 305 2
## 306 2
## 307 2
## 308 2
## 309 2
## 310 2
## 311 2
## 312 2
## 313 2
## 314 2
## 315 2
## 316 2
## 317 2
## 318 2
## 319 2
## 320 2
## 321 2
## 322 2
## 323 2
## 324 2
## 325 2
## 326 2
## 327 2
## 328 2
## 329 2
## 330 2
## 331 2
## 332 2
## 333 2
## 334 2
## 335 2
## 336 2
## 337 2
## 338 2
## 339 2
## 340 2
## 341 2
## 342 2
## 343 2
## 344 2
## 345 2
## 346 2
## 347 2
## 348 2
## 349 2
## 350 2
## 351 2
## 352 2
## 353 2
## 354 2
## 355 2
## 356 2
## 357 2
## 358 2
## 359 2
## 360 2
## 361 2
## 362 2
## 363 2
## 364 2
## 365 2
## 366 2
## 367 2
## 368 2
## 369 2
## 370 2
## 371 2
## 372 2
## 373 2
## 374 2
## 375 2
## 376 2
## 377 2
## 378 2
## 379 2
## 380 2
## 381 2
## 382 2
## 383 2
## 384 2
## 385 2
## 386 2
## 387 2
## 388 2
## 389 2
## 390 2
## 391 2
## 392 2
## 393 2
## 394 2
## 395 2
## 396 2
## 397 2
## 398 2
## 399 2
## 400 2
## 401 2
## 402 2
## 403 2
## 404 2
## 405 2
## 406 2
## 407 2
## 408 2
## 409 2
## 410 2
## 411 2
## 412 2
## 413 2
## 414 2
## 415 2
## 416 2
## 417 2
## 418 2
## 419 2
## 420 2
## 421 2
## 422 2
## 423 2
## 424 2
## 425 2
## 426 2
## 427 2
## 428 2
## 429 2
## 430 2
## 431 2
## 432 2
## 433 2
## 434 2
## 435 2
## 436 2
## 437 2
## 438 2
## 439 2
## 440 2
## 441 2
## 442 2
## 443 2
## 444 2
## 445 2
## 446 2
## 447 2
## 448 2
## 449 2
## 450 2
## 451 2
## 452 2
## 453 2
## 454 2
## 455 2
## 456 2
## 457 2
## 458 2
## 459 2
## 460 2
## 461 2
## 462 2
## 463 2
## 464 2
## 465 2
## 466 2
## 467 2
## 468 2
## 469 2
## 470 2
## 471 2
## 472 2
## 473 2
## 474 2
## 475 2
## 476 2
## 477 2
## 478 2
## 479 2
## 480 2
## 481 2
## 482 2
## 483 2
## 484 2
## 485 2
## 486 2
## 487 2
## 488 2
## 489 2
## 490 2
## 491 2
## 492 2
## 493 2
## 494 2
## 495 2
## 496 2
## 497 2
## 498 2
## 499 2
## 500 2
## 501 2
## 502 2
## 503 2
## 504 2
## 505 2
## 506 2
## 507 2
## 508 2
## 509 2
## 510 2
## 511 2
## 512 2
##
## $nsurveyseason
## [1] 2
##
## $title
## [1] "Pronghorn SSSS"
##
## $unitnames
## [1] "unit1" "unit2" "unit3" "unit4" "unit5" "unit6" "unit7"
## [8] "unit8" "unit9" "unit10" "unit11" "unit12" "unit13" "unit14"
## [15] "unit15" "unit16" "unit17" "unit18" "unit19" "unit20" "unit21"
## [22] "unit22" "unit23" "unit24" "unit25" "unit26" "unit27" "unit28"
## [29] "unit29" "unit30" "unit31" "unit32" "unit33" "unit34" "unit35"
## [36] "unit36" "unit37" "unit38" "unit39" "unit40" "unit41" "unit42"
## [43] "unit43" "unit44" "unit45" "unit46" "unit47" "unit48" "unit49"
## [50] "unit50" "unit51" "unit52" "unit53" "unit54" "unit55" "unit56"
## [57] "unit57" "unit58" "unit59" "unit60" "unit61" "unit62" "unit63"
## [64] "unit64" "unit65" "unit66" "unit67" "unit68" "unit69" "unit70"
## [71] "unit71" "unit72" "unit73" "unit74" "unit75" "unit76" "unit77"
## [78] "unit78" "unit79" "unit80" "unit81" "unit82" "unit83" "unit84"
## [85] "unit85" "unit86" "unit87" "unit88" "unit89" "unit90" "unit91"
## [92] "unit92" "unit93" "unit94" "unit95" "unit96" "unit97" "unit98"
## [99] "unit99" "unit100" "unit101" "unit102" "unit103" "unit104" "unit105"
## [106] "unit106" "unit107" "unit108" "unit109" "unit110" "unit111" "unit112"
## [113] "unit113" "unit114" "unit115" "unit116" "unit117" "unit118" "unit119"
## [120] "unit120" "unit121" "unit122" "unit123" "unit124" "unit125" "unit126"
## [127] "unit127" "unit128" "unit129" "unit130" "unit131" "unit132" "unit133"
## [134] "unit134" "unit135" "unit136" "unit137" "unit138" "unit139" "unit140"
## [141] "unit141" "unit142" "unit143" "unit144" "unit145" "unit146" "unit147"
## [148] "unit148" "unit149" "unit150" "unit151" "unit152" "unit153" "unit154"
## [155] "unit155" "unit156" "unit157" "unit158" "unit159" "unit160" "unit161"
## [162] "unit162" "unit163" "unit164" "unit165" "unit166" "unit167" "unit168"
## [169] "unit169" "unit170" "unit171" "unit172" "unit173" "unit174" "unit175"
## [176] "unit176" "unit177" "unit178" "unit179" "unit180" "unit181" "unit182"
## [183] "unit183" "unit184" "unit185" "unit186" "unit187" "unit188" "unit189"
## [190] "unit190" "unit191" "unit192" "unit193" "unit194" "unit195" "unit196"
## [197] "unit197" "unit198" "unit199" "unit200" "unit201" "unit202" "unit203"
## [204] "unit204" "unit205" "unit206" "unit207" "unit208" "unit209" "unit210"
## [211] "unit211" "unit212" "unit213" "unit214" "unit215" "unit216" "unit217"
## [218] "unit218" "unit219" "unit220" "unit221" "unit222" "unit223" "unit224"
## [225] "unit225" "unit226" "unit227" "unit228" "unit229" "unit230" "unit231"
## [232] "unit232" "unit233" "unit234" "unit235" "unit236" "unit237" "unit238"
## [239] "unit239" "unit240" "unit241" "unit242" "unit243" "unit244" "unit245"
## [246] "unit246" "unit247" "unit248" "unit249" "unit250" "unit251" "unit252"
## [253] "unit253" "unit254" "unit255" "unit256"
##
## $surveynames
## [1] "1-1" "1-2"
##
## $paoname
## [1] "pres.pao"
##
## $frq
## [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [36] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [71] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [106] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [141] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [176] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [211] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [246] 1 1 1 1 1 1 1 1 1 1 1
##
## attr(,"class")
## [1] "pao"
# define the list of models to fit
# Notice the commas between the column and the placement of the quotes
model.list.csv <- textConnection("
p, psi
~1, ~1
~SURVEY, ~1
~1, ~aspect
~1, ~sagebrush")
model.list <- read.csv(model.list.csv, header=TRUE, as.is=TRUE, strip.white=TRUE)
model.list
## p psi
## 1 ~1 ~1
## 2 ~SURVEY ~1
## 3 ~1 ~aspect
## 4 ~1 ~sagebrush
# fit the models
model.fits <- plyr::alply(model.list, 1, function(x,detect.pao){
cat("\n\n***** Starting ", unlist(x), "\n")
fit <- RPresence::occMod(model=list(as.formula(paste("psi",x$psi)),
as.formula(paste("p" ,x$p ))),
data=detect.pao,type="so")
fit
},detect.pao=prong.pao)
##
##
## ***** Starting ~1 ~1
## PRESENCE Version 2.12.21.
##
##
## ***** Starting ~SURVEY ~1
## PRESENCE Version 2.12.21.
##
##
## ***** Starting ~1 ~aspect
## PRESENCE Version 2.12.21.
##
##
## ***** Starting ~1 ~sagebrush
## PRESENCE Version 2.12.21.
# Look the output from a specific model
check.model <- 1
names(model.fits[[check.model]])
## [1] "modname" "model" "dmat" "data" "outfile"
## [6] "neg2loglike" "npar" "aic" "beta" "real"
## [11] "derived" "gof" "warnings" "version"
model.fits[[check.model]]$beta
## $psi
## est se
## A1_psi 0.886474 0.331229
##
## $psi.VC
## [,1]
## [1,] 0.109713
##
## $p
## est se
## B1_p1 -0.169076 0.193449
##
## $p.VC
## [,1]
## [1,] 0.037423
##
## $VC
## A1_psi B1_p1
## A1_psi 0.109713 -0.048881
## B1_p1 -0.048881 0.037423
names(model.fits[[check.model]]$real)
## [1] "psi" "p"
model.fits[[check.model]]$real$psi[1:5,]
## est se lower_0.95 upper_0.95
## psi_unit1 0.708162 0.06845474 0.5590423 0.8228347
## psi_unit2 0.708162 0.06845474 0.5590423 0.8228347
## psi_unit3 0.708162 0.06845474 0.5590423 0.8228347
## psi_unit4 0.708162 0.06845474 0.5590423 0.8228347
## psi_unit5 0.708162 0.06845474 0.5590423 0.8228347
model.fits[[check.model]]$real$p[1:5,]
## est se lower_0.95 upper_0.95
## p1_unit1 0.4578314 0.04801857 0.3662748 0.5523276
## p1_unit2 0.4578314 0.04801857 0.3662748 0.5523276
## p1_unit3 0.4578314 0.04801857 0.3662748 0.5523276
## p1_unit4 0.4578314 0.04801857 0.3662748 0.5523276
## p1_unit5 0.4578314 0.04801857 0.3662748 0.5523276
names(model.fits[[check.model]]$derived)
## [1] "psi_c"
model.fits[[check.model]]$derived$psi_c[1:10,]
## est se lower_0.95 upper_0.95
## unit1 0.4163239 0.1166916 0.2177056 0.6464161
## unit2 1.0000000 0.0000000 1.0000000 1.0000000
## unit3 0.4163239 0.1166916 0.2177056 0.6464161
## unit4 0.4163239 0.1166916 0.2177056 0.6464161
## unit5 1.0000000 0.0000000 1.0000000 1.0000000
## unit6 1.0000000 0.0000000 1.0000000 1.0000000
## unit7 0.4163239 0.1166916 0.2177056 0.6464161
## unit8 1.0000000 0.0000000 1.0000000 1.0000000
## unit9 1.0000000 0.0000000 1.0000000 1.0000000
## unit10 1.0000000 0.0000000 1.0000000 1.0000000
tail(model.fits[[check.model]]$derived$psi_c)
## est se lower_0.95 upper_0.95
## unit251 1.0000000 0.0000000 1.0000000 1.0000000
## unit252 1.0000000 0.0000000 1.0000000 1.0000000
## unit253 0.4163239 0.1166916 0.2177056 0.6464161
## unit254 0.4163239 0.1166916 0.2177056 0.6464161
## unit255 0.4163239 0.1166916 0.2177056 0.6464161
## unit256 0.4163239 0.1166916 0.2177056 0.6464161
# Model averaging
aic.table <- RPresence::createAicTable(model.fits)
aic.table$table
## Model AIC neg2ll npar warn.conv warn.VC DAIC
## 2 psi()p(SURVEY) 635.9227 629.9227 3 0 0 0.0000
## 1 psi()p() 639.3553 635.3553 2 0 0 3.4326
## 4 psi(sagebrush)p() 640.5521 634.5521 3 0 0 4.6294
## 3 psi(aspect)p() 641.3945 631.3945 5 0 0 5.4718
## modlike wgt
## 2 1.0000 0.7444
## 1 0.1797 0.1338
## 4 0.0988 0.0735
## 3 0.0648 0.0483
names(aic.table)
## [1] "table" "models" "ess"
# plot occupancy as a function of sagebrush density
psi.ma <- RPresence::modAvg(aic.table, param="psi")
head(psi.ma)
## est se lower_0.95 upper_0.95
## psi_unit1 0.7017261 0.07033499 0.5490686 0.8196759
## psi_unit2 0.7081633 0.08302050 0.5247658 0.8420840
## psi_unit3 0.7013316 0.06979655 0.5499732 0.8185763
## psi_unit4 0.6904153 0.07821991 0.5211882 0.8204383
## psi_unit5 0.7048222 0.07620245 0.5380474 0.8303698
## psi_unit6 0.7021407 0.07220938 0.5450765 0.8226242
psi.ma$Site <- as.numeric(substring(row.names(psi.ma), 4+regexpr("unit",row.names(psi.ma), fixed=TRUE)))
plotdata <- data.frame(psi.ma, sagebrush = unit.cov$sagebrush)
head(plotdata)
## est se lower_0.95 upper_0.95 Site sagebrush
## psi_unit1 0.7017261 0.07033499 0.5490686 0.8196759 1 9.0
## psi_unit2 0.7081633 0.08302050 0.5247658 0.8420840 2 18.0
## psi_unit3 0.7013316 0.06979655 0.5499732 0.8185763 3 8.4
## psi_unit4 0.6904153 0.07821991 0.5211882 0.8204383 4 3.2
## psi_unit5 0.7048222 0.07620245 0.5380474 0.8303698 5 12.0
## psi_unit6 0.7021407 0.07220938 0.5450765 0.8226242 6 7.8
ggplot(data=plotdata, aes(x=sagebrush, y=est))+
ggtitle("Occupancy as a function of sagebrush density")+
geom_point()+
geom_ribbon(aes(ymin=lower_0.95, ymax=upper_0.95), alpha=0.2)+
ylim(0,1)+
ylab("Estimated occupancy")

# Plot occupancy as a function of aspect
plotdata <- data.frame(psi.ma, aspect = unit.cov$aspect)
head(plotdata)
## est se lower_0.95 upper_0.95 Site aspect
## psi_unit1 0.7017261 0.07033499 0.5490686 0.8196759 1 W
## psi_unit2 0.7081633 0.08302050 0.5247658 0.8420840 2 S
## psi_unit3 0.7013316 0.06979655 0.5499732 0.8185763 3 W
## psi_unit4 0.6904153 0.07821991 0.5211882 0.8204383 4 E
## psi_unit5 0.7048222 0.07620245 0.5380474 0.8303698 5 S
## psi_unit6 0.7021407 0.07220938 0.5450765 0.8226242 6 S
ggplot(data=plotdata, aes(x=aspect, y=est))+
ggtitle("Occupancy as a function of aspect")+
geom_point()+
geom_errorbar(aes(ymin=lower_0.95, ymax=upper_0.95), alpha=0.2)+
ylim(0,1)+
ylab("Estimated occupancy")
