# Blue Ridge Salamander 
# Single Species Single Season Occupancy

# Fitting a single model

# 2018-08-15 Code contributed by Carl James Schwarz (cschwarz.stat.sfu.cs@gmail.com)
library(readxl)
library(RMark)
## This is RMark 2.2.5
##  Documentation available at http://www.phidot.org/software/mark/rmark/RMarkDocumentation.zip
library(ggplot2)

# get the data read in
# Data for detections should be a data frame with rows corresponding to sites
# and columns to visits.
# The usual 1=detected; 0=not detected; NA=not visited is used.

input.data <- readxl::read_excel("../salamander.xls",
                                 sheet="CompleteData",
                                 na="-",
                                 col_names=FALSE)  # notice no column names in row 1 of data file. 

head(input.data)
## # A tibble: 6 x 5
##    X__1  X__2  X__3  X__4  X__5
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1     0     0     0     1     1
## 2     0     1     0     0     0
## 3     0     1     0     0     0
## 4     1     1     1     1     0
## 5     0     0     1     0     0
## 6     0     0     1     0     0
# Extract the history records and create a capture history
input.history <- data.frame(freq=1,
                            ch=apply(input.data[,1:5],1,paste, collapse=""), stringsAsFactors=FALSE)
head(input.history)
##   freq    ch
## 1    1 00011
## 2    1 01000
## 3    1 01000
## 4    1 11110
## 5    1 00100
## 6    1 00100
# Change any NA to . in the chapter history
input.history$ch <- gsub("NA",".", input.history$ch, fixed=TRUE)
head(input.history)
##   freq    ch
## 1    1 00011
## 2    1 01000
## 3    1 01000
## 4    1 11110
## 5    1 00100
## 6    1 00100
# do some basic checks on your data 
# e.g. check number of sites; number of visits etc
nrow(input.history)
## [1] 39
sal.data <- process.data(data=input.history,
                          model="Occupancy")
summary(sal.data)
##                  Length Class      Mode     
## data              2     data.frame list     
## model             1     -none-     character
## mixtures          1     -none-     numeric  
## freq             39     -none-     numeric  
## nocc              1     -none-     numeric  
## nocc.secondary    0     -none-     NULL     
## time.intervals    5     -none-     numeric  
## begin.time        1     -none-     numeric  
## age.unit          1     -none-     numeric  
## initial.ages      1     -none-     numeric  
## group.covariates  0     -none-     NULL     
## nstrata           1     -none-     numeric  
## strata.labels     0     -none-     NULL     
## counts            0     -none-     NULL     
## reverse           1     -none-     logical  
## areas             0     -none-     NULL     
## events            0     -none-     NULL
# What are the parameter names for Single Season Single Species models
setup.parameters("Occupancy", check=TRUE)
## [1] "p"   "Psi"
# Fit a model
# Note that formula HAVE AN = SIGN
mod.fit <-  RMark::mark(sal.data,
                        model="Occupancy",
                        model.parameters=list(
                          Psi   =list(formula=~1),
                          p     =list(formula=~1)
                        )
                     )
## 
## Output summary for Occupancy model
## Name : p(~1)Psi(~1) 
## 
## Npar :  2
## -2lnL:  161.7586
## AICc :  166.0919
## 
## Beta
##                   estimate        se       lcl       ucl
## p:(Intercept)   -1.0525847 0.3008626 -1.642275 -0.462894
## Psi:(Intercept)  0.3831084 0.5086094 -0.613766  1.379983
## 
## 
## Real Parameter p
##          1         2         3         4         5
##  0.2587291 0.2587291 0.2587291 0.2587291 0.2587291
## 
## 
## Real Parameter Psi
##          1
##  0.5946226
summary(mod.fit)
## Output summary for Occupancy model
## Name : p(~1)Psi(~1) 
## 
## Npar :  2
## -2lnL:  161.7586
## AICc :  166.0919
## 
## Beta
##                   estimate        se       lcl       ucl
## p:(Intercept)   -1.0525847 0.3008626 -1.642275 -0.462894
## Psi:(Intercept)  0.3831084 0.5086094 -0.613766  1.379983
## 
## 
## Real Parameter p
##          1         2         3         4         5
##  0.2587291 0.2587291 0.2587291 0.2587291 0.2587291
## 
## 
## Real Parameter Psi
##          1
##  0.5946226
# Look the objects returned in more details
names(mod.fit)
##  [1] "data"             "model"            "title"           
##  [4] "model.name"       "links"            "mixtures"        
##  [7] "call"             "parameters"       "time.intervals"  
## [10] "number.of.groups" "group.labels"     "nocc"            
## [13] "begin.time"       "covariates"       "fixed"           
## [16] "design.matrix"    "pims"             "design.data"     
## [19] "strata.labels"    "mlogit.list"      "profile.int"     
## [22] "simplify"         "model.parameters" "results"         
## [25] "output"
names(mod.fit$results)
##  [1] "lnl"              "deviance"         "deviance.df"     
##  [4] "npar"             "n"                "AICc"            
##  [7] "beta"             "real"             "beta.vcv"        
## [10] "derived"          "derived.vcv"      "covariate.values"
## [13] "singular"         "real.vcv"
# look at estimates on beta and original scale
mod.fit$results$beta  # on the logit scale
##                   estimate        se       lcl       ucl
## p:(Intercept)   -1.0525847 0.3008626 -1.642275 -0.462894
## Psi:(Intercept)  0.3831084 0.5086094 -0.613766  1.379983
mod.fit$results$real# on the regular 0-1 scale for each site
##               estimate        se       lcl       ucl fixed    note
## p g1 a0 t1   0.2587291 0.0577019 0.1621557 0.3862995              
## Psi g1 a0 t1 0.5946226 0.1225985 0.3512006 0.7989882
# derived variabldes is the occupancy probability 
names(mod.fit$results$derived)
## [1] "Occupancy"
mod.fit$results$derived$Occupancy
##    estimate        se       lcl       ucl
## 1 0.5946226 0.1225985 0.3512006 0.7989882
# alternatively
get.real(mod.fit, "Psi", se=TRUE)
##              all.diff.index par.index  estimate        se       lcl
## Psi g1 a0 t1              6         2 0.5946226 0.1225985 0.3512006
##                    ucl fixed    note group age time Age Time
## Psi g1 a0 t1 0.7989882                   1   0    1   0    0
get.real(mod.fit, "Psi", pim=TRUE)
##          1
##  0.5946226
get.real(mod.fit, "p", se=TRUE)
##            all.diff.index par.index  estimate        se       lcl
## p g1 a0 t1              1         1 0.2587291 0.0577019 0.1621557
## p g1 a1 t2              2         1 0.2587291 0.0577019 0.1621557
## p g1 a2 t3              3         1 0.2587291 0.0577019 0.1621557
## p g1 a3 t4              4         1 0.2587291 0.0577019 0.1621557
## p g1 a4 t5              5         1 0.2587291 0.0577019 0.1621557
##                  ucl fixed    note group age time Age Time
## p g1 a0 t1 0.3862995                   1   0    1   0    0
## p g1 a1 t2 0.3862995                   1   1    2   1    1
## p g1 a2 t3 0.3862995                   1   2    3   2    2
## p g1 a3 t4 0.3862995                   1   3    4   3    3
## p g1 a4 t5 0.3862995                   1   4    5   4    4
#######################################
# Fit a model with p constant over time

mod.fit2 <-  RMark::mark(sal.data,
                        model="Occupancy",
                        model.parameters=list(
                          Psi   =list(formula=~1),
                          p     =list(formula=~time)
                        )
)
## 
## Output summary for Occupancy model
## Name : p(~time)Psi(~1) 
## 
## Npar :  6
## -2lnL:  155.7144
## AICc :  170.3394
## 
## Beta
##                   estimate        se        lcl        ucl
## p:(Intercept)   -1.5376880 0.5804914 -2.6754511 -0.3999249
## p:time2         -0.3400080 0.8295311 -1.9658889  1.2858730
## p:time3          1.1237209 0.7019705 -0.2521412  2.4995830
## p:time4          0.9350629 0.7068468 -0.4503569  2.3204827
## p:time5          0.5191254 0.7287348 -0.9091947  1.9474456
## Psi:(Intercept)  0.3222754 0.4825851 -0.6235913  1.2681422
## 
## 
## Real Parameter p
##          1         2         3         4         5
##  0.1768716 0.1326537 0.3979613 0.3537433 0.2653075
## 
## 
## Real Parameter Psi
##          1
##  0.5798787
summary(mod.fit2)
## Output summary for Occupancy model
## Name : p(~time)Psi(~1) 
## 
## Npar :  6
## -2lnL:  155.7144
## AICc :  170.3394
## 
## Beta
##                   estimate        se        lcl        ucl
## p:(Intercept)   -1.5376880 0.5804914 -2.6754511 -0.3999249
## p:time2         -0.3400080 0.8295311 -1.9658889  1.2858730
## p:time3          1.1237209 0.7019705 -0.2521412  2.4995830
## p:time4          0.9350629 0.7068468 -0.4503569  2.3204827
## p:time5          0.5191254 0.7287348 -0.9091947  1.9474456
## Psi:(Intercept)  0.3222754 0.4825851 -0.6235913  1.2681422
## 
## 
## Real Parameter p
##          1         2         3         4         5
##  0.1768716 0.1326537 0.3979613 0.3537433 0.2653075
## 
## 
## Real Parameter Psi
##          1
##  0.5798787
get.real(mod.fit2, "p", se=TRUE)
##            all.diff.index par.index  estimate        se       lcl
## p g1 a0 t1              1         1 0.1768716 0.0845126 0.0644376
## p g1 a1 t2              2         2 0.1326537 0.0740541 0.0415184
## p g1 a2 t3              3         3 0.3979613 0.1190041 0.1998064
## p g1 a3 t4              4         4 0.3537433 0.1137000 0.1711580
## p g1 a4 t5              5         5 0.2653075 0.1010181 0.1156439
##                  ucl fixed    note group age time Age Time
## p g1 a0 t1 0.4013304                   1   0    1   0    0
## p g1 a1 t2 0.3506509                   1   1    2   1    1
## p g1 a2 t3 0.6363532                   1   2    3   2    2
## p g1 a3 t4 0.5919885                   1   3    4   3    3
## p g1 a4 t5 0.4993047                   1   4    5   4    4
####################################################
# fit a model with p equal in first two visits and last 3 visits
# This is a survey-level covariate and so you need to modify the ddl
#

# add a survey level covariate. by adding a column to the design matrix

sal.ddl <- make.design.data(sal.data)
sal.ddl
## $p
##   par.index model.index group age time Age Time
## 1         1           1     1   0    1   0    0
## 2         2           2     1   1    2   1    1
## 3         3           3     1   2    3   2    2
## 4         4           4     1   3    4   3    3
## 5         5           5     1   4    5   4    4
## 
## $Psi
##   par.index model.index group age time Age Time
## 1         1           6     1   0    1   0    0
## 
## $pimtypes
## $pimtypes$p
## $pimtypes$p$pim.type
## [1] "all"
## 
## 
## $pimtypes$Psi
## $pimtypes$Psi$pim.type
## [1] "all"
sal.ddl$p$Effort <- factor(c("d1","d1","d2","d2","d2"))
sal.ddl
## $p
##   par.index model.index group age time Age Time Effort
## 1         1           1     1   0    1   0    0     d1
## 2         2           2     1   1    2   1    1     d1
## 3         3           3     1   2    3   2    2     d2
## 4         4           4     1   3    4   3    3     d2
## 5         5           5     1   4    5   4    4     d2
## 
## $Psi
##   par.index model.index group age time Age Time
## 1         1           6     1   0    1   0    0
## 
## $pimtypes
## $pimtypes$p
## $pimtypes$p$pim.type
## [1] "all"
## 
## 
## $pimtypes$Psi
## $pimtypes$Psi$pim.type
## [1] "all"
mod.fit3 <-  RMark::mark(sal.data, ddl=sal.ddl,
                         model="Occupancy",
                         model.parameters=list(
                           Psi   =list(formula=~1),
                           p     =list(formula=~Effort)
                         )
)
## 
## Output summary for Occupancy model
## Name : p(~Effort)Psi(~1) 
## 
## Npar :  3
## -2lnL:  156.8176
## AICc :  163.5033
## 
## Beta
##                   estimate        se        lcl        ucl
## p:(Intercept)   -1.7043681 0.4484046 -2.5832411 -0.8254952
## p:Effortd2       1.0281446 0.4867145  0.0741842  1.9821050
## Psi:(Intercept)  0.3357008 0.4881036 -0.6209822  1.2923839
## 
## 
## Real Parameter p
##          1         2         3         4         5
##  0.1538956 0.1538956 0.3371047 0.3371047 0.3371047
## 
## 
## Real Parameter Psi
##          1
##  0.5831458
summary(mod.fit3)
## Output summary for Occupancy model
## Name : p(~Effort)Psi(~1) 
## 
## Npar :  3
## -2lnL:  156.8176
## AICc :  163.5033
## 
## Beta
##                   estimate        se        lcl        ucl
## p:(Intercept)   -1.7043681 0.4484046 -2.5832411 -0.8254952
## p:Effortd2       1.0281446 0.4867145  0.0741842  1.9821050
## Psi:(Intercept)  0.3357008 0.4881036 -0.6209822  1.2923839
## 
## 
## Real Parameter p
##          1         2         3         4         5
##  0.1538956 0.1538956 0.3371047 0.3371047 0.3371047
## 
## 
## Real Parameter Psi
##          1
##  0.5831458
get.real(mod.fit3, "p", se=TRUE)
##            all.diff.index par.index  estimate        se       lcl
## p g1 a0 t1              1         1 0.1538956 0.0583875 0.0702248
## p g1 a1 t2              2         1 0.1538956 0.0583875 0.0702248
## p g1 a2 t3              3         2 0.3371047 0.0767915 0.2059100
## p g1 a3 t4              4         2 0.3371047 0.0767915 0.2059100
## p g1 a4 t5              5         2 0.3371047 0.0767915 0.2059100
##                  ucl fixed    note group age time Age Time
## p g1 a0 t1 0.3045984                   1   0    1   0    0
## p g1 a1 t2 0.3045984                   1   1    2   1    1
## p g1 a2 t3 0.4993277                   1   2    3   2    2
## p g1 a3 t4 0.4993277                   1   3    4   3    3
## p g1 a4 t5 0.4993277                   1   4    5   4    4
##############################################
# Collect models
model.set <- RMark::collect.models( type="Occupancy")
model.set
##               model npar     AICc DeltaAICc    weight Deviance
## 3 p(~Effort)Psi(~1)    3 163.5033  0.000000 0.7651935 26.11443
## 1      p(~1)Psi(~1)    2 166.0919  2.588649 0.2097265 31.05546
## 2   p(~time)Psi(~1)    6 170.3394  6.836116 0.0250800 25.01126
model.set <- RMark::collect.models( type="Occupancy")
model.set
##               model npar     AICc DeltaAICc    weight Deviance
## 3 p(~Effort)Psi(~1)    3 163.5033  0.000000 0.7651935 26.11443
## 1      p(~1)Psi(~1)    2 166.0919  2.588649 0.2097265 31.05546
## 2   p(~time)Psi(~1)    6 170.3394  6.836116 0.0250800 25.01126
names(model.set)
## [1] "mod.fit"     "mod.fit2"    "mod.fit3"    "model.table"
model.set$model.table
##         p Psi             model npar     AICc DeltaAICc    weight Deviance
## 3 ~Effort  ~1 p(~Effort)Psi(~1)    3 163.5033  0.000000 0.7651935 26.11443
## 1      ~1  ~1      p(~1)Psi(~1)    2 166.0919  2.588649 0.2097265 31.05546
## 2   ~time  ~1   p(~time)Psi(~1)    6 170.3394  6.836116 0.0250800 25.01126
# model averaged values
get.real(mod.fit , "Psi", se=TRUE)
##              all.diff.index par.index  estimate        se       lcl
## Psi g1 a0 t1              6         2 0.5946226 0.1225985 0.3512006
##                    ucl fixed    note group age time Age Time
## Psi g1 a0 t1 0.7989882                   1   0    1   0    0
get.real(mod.fit2, "Psi", se=TRUE)
##              all.diff.index par.index  estimate        se       lcl
## Psi g1 a0 t1              6         6 0.5798787 0.1175671 0.3489651
##                    ucl fixed    note group age time Age Time
## Psi g1 a0 t1 0.7804245                   1   0    1   0    0
get.real(mod.fit3, "Psi", se=TRUE)
##              all.diff.index par.index  estimate        se       lcl
## Psi g1 a0 t1              6         3 0.5831458 0.1186515 0.3495581
##                    ucl fixed    note group age time Age Time
## Psi g1 a0 t1 0.7845504                   1   0    1   0    0
Psi.ma <- RMark::model.average(model.set, param="Psi")
Psi.ma
##              par.index  estimate        se fixed    note group age time
## Psi g1 a0 t1         6 0.5854709 0.1195573                   1   0    1
##              Age Time
## Psi g1 a0 t1   0    0
# cleanup
cleanup(ask=FALSE)