# Single Species Single Season Occupancy models 

# Weta Data

#  using JAGS
library("R2jags")  # used for call to JAGS
## Loading required package: rjags
## Loading required package: coda
## Linked to JAGS 4.3.0
## Loaded modules: basemod,bugs
## 
## Attaching package: 'R2jags'
## The following object is masked from 'package:coda':
## 
##     traceplot
library(car)
## Loading required package: carData
library(coda)
library(ggplot2)
library(readxl)
library(reshape2)

options(width=400)  # make html output wider

# get the data read in
# Data for detections should be a data frame with rows corresponding to sites
# and columns to visits.
# The usual 1=detected; 0=not detected; NA=not visited is used.

input.history <- readxl::read_excel(file.path("..","weta.xls"),
                                    sheet="detection_histories",
                                    na="-",
                                    col_names=FALSE)  # notice no column names in row 1 of data file. 

# do some basic checks on your data 
# e.g. check number of sites; number of visits etc
nrow(input.history)
## [1] 72
ncol(input.history)
## [1] 5
range(input.history, na.rm=TRUE)
## [1] 0 1
sum(is.na(input.history))
## [1] 98
head(input.history)
## # A tibble: 6 x 5
##    X__1  X__2  X__3  X__4  X__5
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1     0     0     0     0    NA
## 2     0     0     0     0    NA
## 3     0     0     0     1    NA
## 4     0     0     0     0    NA
## 5     0     0     0     0    NA
## 6     0     0     0     0    NA
# Get the site level covariates
site_covar <- readxl::read_excel(file.path("..","weta.xls"),
                                 sheet="site_covar",
                                 na="-",
                                 col_names=TRUE)  # notice col_names in row 1 of table. 


# Create an alternate site level covariate that is a categorical variable rather 
# than indicator variables
site_covar$BrowCat <- paste(c("","B")[1+unlist(site_covar[,1])], c("","N")[1+unlist(site_covar[,2])], sep="")
xtabs(~BrowCat, data=site_covar,exclude=NULL, na.action=na.pass)
## BrowCat
##  B  N 
## 35 37
colSums(site_covar[,1:2])
##   Browsed Unbrowsed 
##        35        37
site_covar$Site <- 1:nrow(site_covar)

head(site_covar)
## # A tibble: 6 x 4
##   Browsed Unbrowsed BrowCat  Site
##     <dbl>     <dbl> <chr>   <int>
## 1       1         0 B           1
## 2       1         0 B           2
## 3       1         0 B           3
## 4       0         1 N           4
## 5       1         0 B           5
## 6       0         1 N           6
# Get the individual covariates. 
obs1 <- readxl::read_excel(file.path("..","weta.xls"),
                           sheet="Obs1",
                           na="-",
                           col_names=FALSE) 
obs2 <- readxl::read_excel(file.path("..","weta.xls"),
                           sheet="Obs2",
                           na="-",
                           col_names=FALSE) 
obs3 <- readxl::read_excel(file.path("..","weta.xls"),
                           sheet="Obs3",
                           na="-",
                           col_names=FALSE) 

Obs <- obs1*1 + obs2*2 + obs3*3
head(Obs)
##   X__1 X__2 X__3 X__4 X__5
## 1    1    3    2    3   NA
## 2    1    3    2    3   NA
## 3    1    3    2    3   NA
## 4    1    3    2    3   NA
## 5    1    3    2    3   NA
## 6    1    3    2    3   NA
# Observational covariate needs to be "stacked" so that sites1...siteS for survey occastion 1
# are then followed by covariate at survey occastion 2 for sites1...siteS, etc

survey.cov <- data.frame(site=rep(1:nrow(input.history) , ncol(input.history)),
                         visit=as.character(rep(1:ncol(input.history), each=nrow(input.history))),  # notice we make a character 
                         obs1 =as.vector(unlist(obs1)),
                         obs2 =as.vector(unlist(obs2)),
                         obs3 =as.vector(unlist(obs3)),
                         Obs  =as.character(as.vector(unlist(Obs))),    # notice we make a character string
                         stringsAsFactors=FALSE)
head(survey.cov)
##   site visit obs1 obs2 obs3 Obs
## 1    1     1    1    0    0   1
## 2    2     1    1    0    0   1
## 3    3     1    1    0    0   1
## 4    4     1    1    0    0   1
## 5    5     1    1    0    0   1
## 6    6     1    1    0    0   1
str(survey.cov)
## 'data.frame':    360 obs. of  6 variables:
##  $ site : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ visit: chr  "1" "1" "1" "1" ...
##  $ obs1 : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ obs2 : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ obs3 : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ Obs  : chr  "1" "1" "1" "1" ...
# check that missing values in history and observer covariates align
select <- is.na(as.vector(unlist(input.history)))
survey.cov[select,]
##     site visit obs1 obs2 obs3  Obs
## 16    16     1   NA   NA   NA <NA>
## 17    17     1   NA   NA   NA <NA>
## 18    18     1   NA   NA   NA <NA>
## 19    19     1   NA   NA   NA <NA>
## 38    38     1   NA   NA   NA <NA>
## 39    39     1   NA   NA   NA <NA>
## 40    40     1   NA   NA   NA <NA>
## 41    41     1   NA   NA   NA <NA>
## 42    42     1   NA   NA   NA <NA>
## 43    43     1   NA   NA   NA <NA>
## 44    44     1   NA   NA   NA <NA>
## 45    45     1   NA   NA   NA <NA>
## 46    46     1   NA   NA   NA <NA>
## 47    47     1   NA   NA   NA <NA>
## 63    63     1   NA   NA   NA <NA>
## 64    64     1   NA   NA   NA <NA>
## 65    65     1   NA   NA   NA <NA>
## 66    66     1   NA   NA   NA <NA>
## 67    67     1   NA   NA   NA <NA>
## 93    21     2   NA   NA   NA <NA>
## 94    22     2   NA   NA   NA <NA>
## 95    23     2   NA   NA   NA <NA>
## 96    24     2   NA   NA   NA <NA>
## 97    25     2   NA   NA   NA <NA>
## 115   43     2   NA   NA   NA <NA>
## 116   44     2   NA   NA   NA <NA>
## 117   45     2   NA   NA   NA <NA>
## 118   46     2   NA   NA   NA <NA>
## 119   47     2   NA   NA   NA <NA>
## 140   68     2   NA   NA   NA <NA>
## 141   69     2   NA   NA   NA <NA>
## 142   70     2   NA   NA   NA <NA>
## 143   71     2   NA   NA   NA <NA>
## 144   72     2   NA   NA   NA <NA>
## 155   11     3   NA   NA   NA <NA>
## 156   12     3   NA   NA   NA <NA>
## 157   13     3   NA   NA   NA <NA>
## 158   14     3   NA   NA   NA <NA>
## 159   15     3   NA   NA   NA <NA>
## 182   38     3   NA   NA   NA <NA>
## 183   39     3   NA   NA   NA <NA>
## 202   58     3   NA   NA   NA <NA>
## 203   59     3   NA   NA   NA <NA>
## 204   60     3   NA   NA   NA <NA>
## 205   61     3   NA   NA   NA <NA>
## 206   62     3   NA   NA   NA <NA>
## 232   16     4   NA   NA   NA <NA>
## 233   17     4   NA   NA   NA <NA>
## 234   18     4   NA   NA   NA <NA>
## 235   19     4   NA   NA   NA <NA>
## 236   20     4   NA   NA   NA <NA>
## 237   21     4   NA   NA   NA <NA>
## 238   22     4   NA   NA   NA <NA>
## 239   23     4   NA   NA   NA <NA>
## 240   24     4   NA   NA   NA <NA>
## 241   25     4   NA   NA   NA <NA>
## 242   26     4   NA   NA   NA <NA>
## 243   27     4   NA   NA   NA <NA>
## 244   28     4   NA   NA   NA <NA>
## 245   29     4   NA   NA   NA <NA>
## 279   63     4   NA   NA   NA <NA>
## 280   64     4   NA   NA   NA <NA>
## 281   65     4   NA   NA   NA <NA>
## 282   66     4   NA   NA   NA <NA>
## 283   67     4   NA   NA   NA <NA>
## 284   68     4   NA   NA   NA <NA>
## 285   69     4   NA   NA   NA <NA>
## 286   70     4   NA   NA   NA <NA>
## 287   71     4   NA   NA   NA <NA>
## 288   72     4   NA   NA   NA <NA>
## 289    1     5   NA   NA   NA <NA>
## 290    2     5   NA   NA   NA <NA>
## 291    3     5   NA   NA   NA <NA>
## 292    4     5   NA   NA   NA <NA>
## 293    5     5   NA   NA   NA <NA>
## 294    6     5   NA   NA   NA <NA>
## 295    7     5   NA   NA   NA <NA>
## 296    8     5   NA   NA   NA <NA>
## 297    9     5   NA   NA   NA <NA>
## 298   10     5   NA   NA   NA <NA>
## 314   26     5   NA   NA   NA <NA>
## 315   27     5   NA   NA   NA <NA>
## 316   28     5   NA   NA   NA <NA>
## 317   29     5   NA   NA   NA <NA>
## 318   30     5   NA   NA   NA <NA>
## 319   31     5   NA   NA   NA <NA>
## 320   32     5   NA   NA   NA <NA>
## 321   33     5   NA   NA   NA <NA>
## 336   48     5   NA   NA   NA <NA>
## 337   49     5   NA   NA   NA <NA>
## 338   50     5   NA   NA   NA <NA>
## 339   51     5   NA   NA   NA <NA>
## 340   52     5   NA   NA   NA <NA>
## 341   53     5   NA   NA   NA <NA>
## 342   54     5   NA   NA   NA <NA>
## 343   55     5   NA   NA   NA <NA>
## 344   56     5   NA   NA   NA <NA>
## 345   57     5   NA   NA   NA <NA>
sum(is.na(survey.cov[!select,]))
## [1] 0
# The missing values in the survey covariates must be filled with dummy
# values to avoid problems in fitting the models that depend on them
survey.cov[ is.na(survey.cov)] <- -1
survey.cov[select,]
##     site visit obs1 obs2 obs3 Obs
## 16    16     1   -1   -1   -1  -1
## 17    17     1   -1   -1   -1  -1
## 18    18     1   -1   -1   -1  -1
## 19    19     1   -1   -1   -1  -1
## 38    38     1   -1   -1   -1  -1
## 39    39     1   -1   -1   -1  -1
## 40    40     1   -1   -1   -1  -1
## 41    41     1   -1   -1   -1  -1
## 42    42     1   -1   -1   -1  -1
## 43    43     1   -1   -1   -1  -1
## 44    44     1   -1   -1   -1  -1
## 45    45     1   -1   -1   -1  -1
## 46    46     1   -1   -1   -1  -1
## 47    47     1   -1   -1   -1  -1
## 63    63     1   -1   -1   -1  -1
## 64    64     1   -1   -1   -1  -1
## 65    65     1   -1   -1   -1  -1
## 66    66     1   -1   -1   -1  -1
## 67    67     1   -1   -1   -1  -1
## 93    21     2   -1   -1   -1  -1
## 94    22     2   -1   -1   -1  -1
## 95    23     2   -1   -1   -1  -1
## 96    24     2   -1   -1   -1  -1
## 97    25     2   -1   -1   -1  -1
## 115   43     2   -1   -1   -1  -1
## 116   44     2   -1   -1   -1  -1
## 117   45     2   -1   -1   -1  -1
## 118   46     2   -1   -1   -1  -1
## 119   47     2   -1   -1   -1  -1
## 140   68     2   -1   -1   -1  -1
## 141   69     2   -1   -1   -1  -1
## 142   70     2   -1   -1   -1  -1
## 143   71     2   -1   -1   -1  -1
## 144   72     2   -1   -1   -1  -1
## 155   11     3   -1   -1   -1  -1
## 156   12     3   -1   -1   -1  -1
## 157   13     3   -1   -1   -1  -1
## 158   14     3   -1   -1   -1  -1
## 159   15     3   -1   -1   -1  -1
## 182   38     3   -1   -1   -1  -1
## 183   39     3   -1   -1   -1  -1
## 202   58     3   -1   -1   -1  -1
## 203   59     3   -1   -1   -1  -1
## 204   60     3   -1   -1   -1  -1
## 205   61     3   -1   -1   -1  -1
## 206   62     3   -1   -1   -1  -1
## 232   16     4   -1   -1   -1  -1
## 233   17     4   -1   -1   -1  -1
## 234   18     4   -1   -1   -1  -1
## 235   19     4   -1   -1   -1  -1
## 236   20     4   -1   -1   -1  -1
## 237   21     4   -1   -1   -1  -1
## 238   22     4   -1   -1   -1  -1
## 239   23     4   -1   -1   -1  -1
## 240   24     4   -1   -1   -1  -1
## 241   25     4   -1   -1   -1  -1
## 242   26     4   -1   -1   -1  -1
## 243   27     4   -1   -1   -1  -1
## 244   28     4   -1   -1   -1  -1
## 245   29     4   -1   -1   -1  -1
## 279   63     4   -1   -1   -1  -1
## 280   64     4   -1   -1   -1  -1
## 281   65     4   -1   -1   -1  -1
## 282   66     4   -1   -1   -1  -1
## 283   67     4   -1   -1   -1  -1
## 284   68     4   -1   -1   -1  -1
## 285   69     4   -1   -1   -1  -1
## 286   70     4   -1   -1   -1  -1
## 287   71     4   -1   -1   -1  -1
## 288   72     4   -1   -1   -1  -1
## 289    1     5   -1   -1   -1  -1
## 290    2     5   -1   -1   -1  -1
## 291    3     5   -1   -1   -1  -1
## 292    4     5   -1   -1   -1  -1
## 293    5     5   -1   -1   -1  -1
## 294    6     5   -1   -1   -1  -1
## 295    7     5   -1   -1   -1  -1
## 296    8     5   -1   -1   -1  -1
## 297    9     5   -1   -1   -1  -1
## 298   10     5   -1   -1   -1  -1
## 314   26     5   -1   -1   -1  -1
## 315   27     5   -1   -1   -1  -1
## 316   28     5   -1   -1   -1  -1
## 317   29     5   -1   -1   -1  -1
## 318   30     5   -1   -1   -1  -1
## 319   31     5   -1   -1   -1  -1
## 320   32     5   -1   -1   -1  -1
## 321   33     5   -1   -1   -1  -1
## 336   48     5   -1   -1   -1  -1
## 337   49     5   -1   -1   -1  -1
## 338   50     5   -1   -1   -1  -1
## 339   51     5   -1   -1   -1  -1
## 340   52     5   -1   -1   -1  -1
## 341   53     5   -1   -1   -1  -1
## 342   54     5   -1   -1   -1  -1
## 343   55     5   -1   -1   -1  -1
## 344   56     5   -1   -1   -1  -1
## 345   57     5   -1   -1   -1  -1
sum(is.na(survey.cov[!select,]==-1))
## [1] 0
# The BUGS model is specified as a text file.

# The model file.
# The cat() command is used to save the model to the working directory.
# Notice that you CANNOT have any " (double quotes) in the bugs code
# between the start and end of the cat("...",) command.

# Inputs to the model are 
#     Nsites  - number of sites
#     Nvisits - (max) number of visits over all sites.
#     Nsites.visits - number of sites x number of visits 
#          if there is missing data (no visits), simply drop the corresponding row
#     History - vector of 1 or 0 corresponding to Site-Visit pair
#     Site    - vector indicating which site the row corresponds to
#     Visit   - vector indicating which visit the row corresponds to
# 
#     dmatrix.psi - design matrix for psi
#     Nbeta.psi     - number of columns in design matrix for psi

#     dmatrix.p   - design matrix for p
#     Nbeta.p       - number of columns of design matrix for p

# 
cat(file="model.txt", "
############################################################

model {
   # estimate psi for each site from the design matrix
   for(i in 1:Nsites){
      logit(psi[i]) = inprod( dmatrix.psi[i, 1:Nbeta.psi], beta.psi[1:Nbeta.psi])
   }

   # estimate p for each observation
   for(i in 1:Nsites.visits){
      logit(p[i]) = inprod( dmatrix.p[i, 1:Nbeta.p], beta.p[1:Nbeta.p])
    }


   # set up the state model, i.e. is the site actually occupied or not
   for(i in 1:Nsites){
      z[i] ~  dbern(psi[i])
   }

   # the observation model.
   for(j in 1:Nsites.visits){
      p.z[j] <- z[Site[j]]*p[j]
      History[j] ~ dbern(p.z[j])
   }

   # priors on the betas
   beta.psi[1] ~ dnorm(0, .25)  # intercept we want basically flat on regular scale
   for(i in 2:Nbeta.psi){
      beta.psi[i] ~ dnorm(0, .0001)
   }

   beta.p[1] ~ dnorm(0, .25)
   for(i in 2:Nbeta.p){
      beta.p[i] ~ dnorm(0, .0001)
   }

   # derived variables
   # number of occupied sites
   occ.sites <- sum(z[1:Nsites])
 
   # belief that psi is above some value
   prob.psi.greater.50 <- ifelse( psi[1] > 0.5, 1, 0)
}
") # End of the model


# get the data in the right format. We want all of the sites for visit 1, then all of the sites for visit 2 etc.

Survey <- data.frame(
     History = as.vector(unlist(input.history)),  # stacks the columns
     Site    = rep(1:nrow(input.history), ncol(input.history)),
     Visit   = as.character(rep(1:ncol(input.history), each=nrow(input.history))), 
     stringsAsFactors=FALSE)
Survey[1:10,]
##    History Site Visit
## 1        0    1     1
## 2        0    2     1
## 3        0    3     1
## 4        0    4     1
## 5        0    5     1
## 6        0    6     1
## 7        0    7     1
## 8        0    8     1
## 9        0    9     1
## 10       1   10     1
# add in covaraites
Survey$Obs <- survey.cov$Obs  # both are in correct order
Survey <- merge(Survey, site_covar[,c("Site","BrowCat")])

# re-sort
Survey <- Survey[ order(Survey$Visit, Survey$Site),]
head(Survey)
##    Site History Visit Obs BrowCat
## 1     1       0     1   1       B
## 6     2       0     1   1       B
## 15    3       0     1   1       B
## 20    4       0     1   1       N
## 22    5       0     1   1       B
## 26    6       0     1   1       N
str(Survey) # be sure that all categorical variables are character or factors
## 'data.frame':    360 obs. of  5 variables:
##  $ Site   : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ History: num  0 0 0 0 0 0 0 0 0 1 ...
##  $ Visit  : chr  "1" "1" "1" "1" ...
##  $ Obs    : chr  "1" "1" "1" "1" ...
##  $ BrowCat: chr  "B" "B" "B" "N" ...
# Remove any rows with missing history value (i.e missing)
sum(is.na(Survey$History))
## [1] 98
dim(Survey)
## [1] 360   5
Survey <- Survey[!is.na(Survey$History),]
dim(Survey)
## [1] 262   5
Nsites        <- nrow(input.history)
Nvisits       <- ncol(input.history)
Nsites.visits <- nrow(Survey)



# Get the design matrix for model psi(BrowCat)p(visit)
dmatrix.psi <- model.matrix(~BrowCat,  data=site_covar)  
Nbeta.psi <- ncol(dmatrix.psi)

dmatrix.p  <- model.matrix(~Visit,  data=Survey)
Nbeta.p    <- ncol(dmatrix.p)
model.name <- "psi(B) p(v)"


# Get the design matrix for model psi(BrowCat) p(Obs + Visit)
dmatrix.psi <- model.matrix(~BrowCat,  data=site_covar)  # constant psi
Nbeta.psi <- ncol(dmatrix.psi)

dmatrix.p  <- model.matrix(~Visit+Obs,  data=Survey)
Nbeta.p    <- ncol(dmatrix.p)
model.name <- "pt-psidot"







# The datalist will be passed to JAGS with the names of the data
# values.
data.list <- list(Nsites=Nsites,
                  Nvisit=Nvisits,
                  Nsites.visits=Nsites.visits,
                  History = Survey$History,
                  Site    = Survey$Site,
                  Visit   = Survey$Visit,
                  dmatrix.psi=dmatrix.psi, Nbeta.psi=Nbeta.psi,
                  dmatrix.p  =dmatrix.p,   Nbeta.p  =Nbeta.p)
                  
  
# check the list
data.list
## $Nsites
## [1] 72
## 
## $Nvisit
## [1] 5
## 
## $Nsites.visits
## [1] 262
## 
## $History
##   [1] 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
## [198] 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 1 1 1 0 0 1 0 1 1 0 0 0 1
## 
## $Site
##   [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 68 69 70 71 72  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67  1  2  3  4  5  6  7  8  9 10 16 17 18 19 20 21 22 23 24 25 26
## [132] 27 28 29 30 31 32 33 34 35 36 37 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 63 64 65 66 67 68 69 70 71 72  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 34 35 36 37 38 39 40 41 42 43 44 45 46 47 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
## 
## $Visit
##   [1] "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "2" "2" "2" "2" "2" "2" "2" "2" "2" "2" "2" "2" "2" "2" "2" "2" "2" "2" "2" "2" "2" "2" "2" "2" "2" "2" "2" "2" "2" "2" "2" "2" "2" "2" "2" "2" "2" "2" "2" "2" "2" "2" "2" "2" "2"
##  [99] "2" "2" "2" "2" "2" "2" "2" "2" "2" "2" "2" "2" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "3" "4" "4" "4" "4" "4" "4" "4" "4" "4" "4" "4" "4" "4" "4" "4" "4" "4" "4" "4" "4" "4" "4" "4" "4" "4" "4"
## [197] "4" "4" "4" "4" "4" "4" "4" "4" "4" "4" "4" "4" "4" "4" "4" "4" "4" "4" "4" "4" "4" "4" "5" "5" "5" "5" "5" "5" "5" "5" "5" "5" "5" "5" "5" "5" "5" "5" "5" "5" "5" "5" "5" "5" "5" "5" "5" "5" "5" "5" "5" "5" "5" "5" "5" "5" "5" "5" "5" "5" "5" "5" "5" "5" "5" "5"
## 
## $dmatrix.psi
##    (Intercept) BrowCatN
## 1            1        0
## 2            1        0
## 3            1        0
## 4            1        1
## 5            1        0
## 6            1        1
## 7            1        1
## 8            1        1
## 9            1        1
## 10           1        0
## 11           1        0
## 12           1        0
## 13           1        0
## 14           1        1
## 15           1        1
## 16           1        0
## 17           1        0
## 18           1        1
## 19           1        1
## 20           1        0
## 21           1        0
## 22           1        1
## 23           1        0
## 24           1        1
## 25           1        1
## 26           1        1
## 27           1        1
## 28           1        0
## 29           1        1
## 30           1        1
## 31           1        1
## 32           1        0
## 33           1        1
## 34           1        1
## 35           1        1
## 36           1        1
## 37           1        1
## 38           1        0
## 39           1        1
## 40           1        1
## 41           1        1
## 42           1        0
## 43           1        1
## 44           1        1
## 45           1        1
## 46           1        0
## 47           1        1
## 48           1        0
## 49           1        0
## 50           1        1
## 51           1        0
## 52           1        0
## 53           1        1
## 54           1        0
## 55           1        0
## 56           1        1
## 57           1        0
## 58           1        0
## 59           1        0
## 60           1        0
## 61           1        0
## 62           1        0
## 63           1        1
## 64           1        1
## 65           1        0
## 66           1        0
## 67           1        0
## 68           1        0
## 69           1        1
## 70           1        0
## 71           1        1
## 72           1        1
## attr(,"assign")
## [1] 0 1
## attr(,"contrasts")
## attr(,"contrasts")$BrowCat
## [1] "contr.treatment"
## 
## 
## $Nbeta.psi
## [1] 2
## 
## $dmatrix.p
##     (Intercept) Visit2 Visit3 Visit4 Visit5 Obs2 Obs3
## 1             1      0      0      0      0    0    0
## 6             1      0      0      0      0    0    0
## 15            1      0      0      0      0    0    0
## 20            1      0      0      0      0    0    0
## 22            1      0      0      0      0    0    0
## 26            1      0      0      0      0    0    0
## 34            1      0      0      0      0    0    0
## 38            1      0      0      0      0    0    0
## 44            1      0      0      0      0    0    0
## 47            1      0      0      0      0    0    0
## 55            1      0      0      0      0    0    0
## 60            1      0      0      0      0    0    0
## 65            1      0      0      0      0    0    0
## 67            1      0      0      0      0    0    0
## 71            1      0      0      0      0    0    0
## 100           1      0      0      0      0    0    0
## 104           1      0      0      0      0    0    0
## 108           1      0      0      0      0    0    0
## 113           1      0      0      0      0    0    0
## 120           1      0      0      0      0    0    0
## 123           1      0      0      0      0    0    0
## 129           1      0      0      0      0    1    0
## 133           1      0      0      0      0    1    0
## 137           1      0      0      0      0    1    0
## 145           1      0      0      0      0    1    0
## 149           1      0      0      0      0    1    0
## 153           1      0      0      0      0    1    0
## 158           1      0      0      0      0    1    0
## 163           1      0      0      0      0    1    0
## 167           1      0      0      0      0    1    0
## 172           1      0      0      0      0    1    0
## 180           1      0      0      0      0    1    0
## 185           1      0      0      0      0    1    0
## 236           1      0      0      0      0    0    1
## 243           1      0      0      0      0    0    1
## 246           1      0      0      0      0    0    1
## 255           1      0      0      0      0    0    1
## 259           1      0      0      0      0    0    1
## 264           1      0      0      0      0    0    1
## 267           1      0      0      0      0    0    1
## 272           1      0      0      0      0    0    1
## 279           1      0      0      0      0    0    1
## 283           1      0      0      0      0    0    1
## 287           1      0      0      0      0    0    1
## 292           1      0      0      0      0    0    1
## 299           1      0      0      0      0    0    1
## 303           1      0      0      0      0    0    1
## 308           1      0      0      0      0    0    1
## 338           1      0      0      0      0    0    1
## 344           1      0      0      0      0    0    1
## 348           1      0      0      0      0    0    1
## 352           1      0      0      0      0    0    1
## 357           1      0      0      0      0    0    1
## 3             1      1      0      0      0    0    1
## 7             1      1      0      0      0    0    1
## 11            1      1      0      0      0    0    1
## 18            1      1      0      0      0    0    1
## 25            1      1      0      0      0    0    1
## 28            1      1      0      0      0    0    1
## 32            1      1      0      0      0    0    1
## 37            1      1      0      0      0    0    1
## 42            1      1      0      0      0    0    1
## 46            1      1      0      0      0    0    1
## 54            1      1      0      0      0    0    1
## 59            1      1      0      0      0    0    1
## 64            1      1      0      0      0    0    1
## 66            1      1      0      0      0    0    1
## 73            1      1      0      0      0    0    1
## 76            1      1      0      0      0    0    1
## 83            1      1      0      0      0    0    1
## 86            1      1      0      0      0    0    1
## 95            1      1      0      0      0    0    1
## 98            1      1      0      0      0    0    1
## 126           1      1      0      0      0    0    0
## 131           1      1      0      0      0    0    0
## 140           1      1      0      0      0    0    0
## 142           1      1      0      0      0    0    0
## 147           1      1      0      0      0    0    0
## 152           1      1      0      0      0    0    0
## 160           1      1      0      0      0    0    0
## 161           1      1      0      0      0    0    0
## 166           1      1      0      0      0    0    0
## 171           1      1      0      0      0    0    0
## 178           1      1      0      0      0    0    0
## 182           1      1      0      0      0    0    0
## 186           1      1      0      0      0    0    0
## 191           1      1      0      0      0    0    0
## 196           1      1      0      0      0    0    0
## 204           1      1      0      0      0    0    0
## 207           1      1      0      0      0    0    0
## 237           1      1      0      0      0    1    0
## 242           1      1      0      0      0    1    0
## 247           1      1      0      0      0    1    0
## 251           1      1      0      0      0    1    0
## 260           1      1      0      0      0    1    0
## 265           1      1      0      0      0    1    0
## 268           1      1      0      0      0    1    0
## 271           1      1      0      0      0    1    0
## 280           1      1      0      0      0    1    0
## 284           1      1      0      0      0    1    0
## 289           1      1      0      0      0    1    0
## 293           1      1      0      0      0    1    0
## 300           1      1      0      0      0    1    0
## 305           1      1      0      0      0    1    0
## 310           1      1      0      0      0    1    0
## 313           1      1      0      0      0    1    0
## 316           1      1      0      0      0    1    0
## 325           1      1      0      0      0    1    0
## 330           1      1      0      0      0    1    0
## 334           1      1      0      0      0    1    0
## 5             1      0      1      0      0    1    0
## 10            1      0      1      0      0    1    0
## 14            1      0      1      0      0    1    0
## 19            1      0      1      0      0    1    0
## 21            1      0      1      0      0    1    0
## 30            1      0      1      0      0    1    0
## 35            1      0      1      0      0    1    0
## 40            1      0      1      0      0    1    0
## 43            1      0      1      0      0    1    0
## 50            1      0      1      0      0    1    0
## 79            1      0      1      0      0    1    0
## 84            1      0      1      0      0    1    0
## 87            1      0      1      0      0    1    0
## 91            1      0      1      0      0    1    0
## 99            1      0      1      0      0    1    0
## 105           1      0      1      0      0    1    0
## 109           1      0      1      0      0    1    0
## 112           1      0      1      0      0    1    0
## 117           1      0      1      0      0    1    0
## 121           1      0      1      0      0    1    0
## 127           1      0      1      0      0    0    1
## 132           1      0      1      0      0    0    1
## 139           1      0      1      0      0    0    1
## 144           1      0      1      0      0    0    1
## 148           1      0      1      0      0    0    1
## 151           1      0      1      0      0    0    1
## 156           1      0      1      0      0    0    1
## 164           1      0      1      0      0    0    1
## 169           1      0      1      0      0    0    1
## 174           1      0      1      0      0    0    1
## 177           1      0      1      0      0    0    1
## 184           1      0      1      0      0    0    1
## 197           1      0      1      0      0    0    1
## 205           1      0      1      0      0    0    1
## 210           1      0      1      0      0    0    1
## 213           1      0      1      0      0    0    1
## 217           1      0      1      0      0    0    1
## 222           1      0      1      0      0    0    1
## 229           1      0      1      0      0    0    1
## 234           1      0      1      0      0    0    1
## 240           1      0      1      0      0    0    0
## 244           1      0      1      0      0    0    0
## 249           1      0      1      0      0    0    0
## 252           1      0      1      0      0    0    0
## 256           1      0      1      0      0    0    0
## 262           1      0      1      0      0    0    0
## 270           1      0      1      0      0    0    0
## 274           1      0      1      0      0    0    0
## 277           1      0      1      0      0    0    0
## 282           1      0      1      0      0    0    0
## 311           1      0      1      0      0    0    0
## 318           1      0      1      0      0    0    0
## 321           1      0      1      0      0    0    0
## 326           1      0      1      0      0    0    0
## 331           1      0      1      0      0    0    0
## 340           1      0      1      0      0    0    0
## 342           1      0      1      0      0    0    0
## 347           1      0      1      0      0    0    0
## 351           1      0      1      0      0    0    0
## 356           1      0      1      0      0    0    0
## 2             1      0      0      1      0    0    1
## 8             1      0      0      1      0    0    1
## 12            1      0      0      1      0    0    1
## 16            1      0      0      1      0    0    1
## 24            1      0      0      1      0    0    1
## 27            1      0      0      1      0    0    1
## 31            1      0      0      1      0    0    1
## 36            1      0      0      1      0    0    1
## 45            1      0      0      1      0    0    1
## 48            1      0      0      1      0    0    1
## 51            1      0      0      1      0    0    1
## 56            1      0      0      1      0    0    1
## 61            1      0      0      1      0    0    1
## 68            1      0      0      1      0    0    1
## 72            1      0      0      1      0    0    1
## 150           1      0      0      1      0    0    0
## 154           1      0      0      1      0    0    0
## 157           1      0      0      1      0    0    0
## 165           1      0      0      1      0    0    0
## 170           1      0      0      1      0    0    0
## 175           1      0      0      1      0    0    0
## 179           1      0      0      1      0    0    0
## 183           1      0      0      1      0    0    0
## 190           1      0      0      1      0    0    0
## 195           1      0      0      1      0    0    0
## 200           1      0      0      1      0    0    0
## 201           1      0      0      1      0    0    0
## 209           1      0      0      1      0    0    0
## 214           1      0      0      1      0    0    0
## 219           1      0      0      1      0    0    0
## 221           1      0      0      1      0    0    0
## 230           1      0      0      1      0    0    0
## 235           1      0      0      1      0    0    0
## 239           1      0      0      1      0    1    0
## 245           1      0      0      1      0    1    0
## 250           1      0      0      1      0    1    0
## 254           1      0      0      1      0    1    0
## 258           1      0      0      1      0    1    0
## 263           1      0      0      1      0    1    0
## 266           1      0      0      1      0    1    0
## 275           1      0      0      1      0    1    0
## 278           1      0      0      1      0    1    0
## 285           1      0      0      1      0    1    0
## 288           1      0      0      1      0    1    0
## 295           1      0      0      1      0    1    0
## 297           1      0      0      1      0    1    0
## 302           1      0      0      1      0    1    0
## 307           1      0      0      1      0    1    0
## 53            1      0      0      0      1    0    0
## 58            1      0      0      0      1    0    0
## 62            1      0      0      0      1    0    0
## 69            1      0      0      0      1    0    0
## 74            1      0      0      0      1    0    0
## 78            1      0      0      0      1    0    0
## 82            1      0      0      0      1    0    0
## 89            1      0      0      0      1    0    0
## 94            1      0      0      0      1    0    0
## 97            1      0      0      0      1    0    0
## 102           1      0      0      0      1    0    0
## 106           1      0      0      0      1    0    0
## 115           1      0      0      0      1    0    0
## 118           1      0      0      0      1    0    0
## 125           1      0      0      0      1    0    0
## 168           1      0      0      0      1    1    0
## 173           1      0      0      0      1    1    0
## 176           1      0      0      0      1    1    0
## 181           1      0      0      0      1    1    0
## 189           1      0      0      0      1    1    0
## 194           1      0      0      0      1    1    0
## 198           1      0      0      0      1    1    0
## 203           1      0      0      0      1    1    0
## 208           1      0      0      0      1    1    0
## 212           1      0      0      0      1    1    0
## 216           1      0      0      0      1    1    0
## 224           1      0      0      0      1    1    0
## 228           1      0      0      0      1    1    0
## 232           1      0      0      0      1    1    0
## 290           1      0      0      0      1    0    1
## 294           1      0      0      0      1    0    1
## 296           1      0      0      0      1    0    1
## 301           1      0      0      0      1    0    1
## 306           1      0      0      0      1    0    1
## 314           1      0      0      0      1    0    1
## 317           1      0      0      0      1    0    1
## 323           1      0      0      0      1    0    1
## 327           1      0      0      0      1    0    1
## 335           1      0      0      0      1    0    1
## 339           1      0      0      0      1    0    1
## 341           1      0      0      0      1    0    1
## 346           1      0      0      0      1    0    1
## 355           1      0      0      0      1    0    1
## 360           1      0      0      0      1    0    1
## attr(,"assign")
## [1] 0 1 1 1 1 2 2
## attr(,"contrasts")
## attr(,"contrasts")$Visit
## [1] "contr.treatment"
## 
## attr(,"contrasts")$Obs
## [1] "contr.treatment"
## 
## 
## $Nbeta.p
## [1] 7
# Next create the initial values.
# If you are using more than one chain, you need to create a function
# that returns initial values for each chain.

# We define the initial value of z as 1 if any visit resulted in a detection, other wise 0
init.z <- apply(input.history, 1, max, na.rm=TRUE)

# we will start at the same initial starting point for each chain even though this
# is not recommended. 
init.list <- list(
      list(z=init.z, beta.psi=rep(0,Nbeta.psi), beta.p=rep(0,Nbeta.p) ),
      list(z=init.z, beta.psi=rep(0,Nbeta.psi), beta.p=rep(0,Nbeta.p) ),
      list(z=init.z, beta.psi=rep(0,Nbeta.psi), beta.p=rep(0,Nbeta.p) )
      
)  # end of list of lists of initial values

# Next create the list of parameters to monitor.
# The deviance is automatically monitored.
# 
monitor.list <- c("z","occ.sites", "prob.psi.greater.50",
                  "psi", "p",
                  "beta.psi", "beta.p") # parameters to monitor
 
# Finally, the actual call to JAGS
set.seed(234234)  # intitalize seed for MCMC 

results <- R2jags::jags( 
      data      =data.list,   # list of data variables
      inits     =init.list,   # list/function for initial values
      parameters=monitor.list,# list of parameters to monitor
      model.file="model.txt",  # file with bugs model
      n.chains=3,
      n.iter  =5000,          # total iterations INCLUDING burn in
      n.burnin=2000,          # number of burning iterations
      n.thin=2,               # how much to thin
      DIC=TRUE               # is DIC to be computed?
      )
## module glm loaded
## Warning in jags.model(model.file, data = data, inits = init.values, n.chains = n.chains, : Unused variable "Nvisit" in data
## Warning in jags.model(model.file, data = data, inits = init.values, n.chains = n.chains, : Unused variable "Visit" in data
## Compiling model graph
##    Resolving undeclared variables
##    Allocating nodes
## Graph information:
##    Observed stochastic nodes: 262
##    Unobserved stochastic nodes: 81
##    Total graph size: 3228
## 
## Initializing model
#######################################
# extract some of the usual stuff and use R code directly
# use the standard print method

names(results)
## [1] "model"              "BUGSoutput"         "parameters.to.save" "model.file"         "n.iter"             "DIC"
names(results$BUGSoutput)
##  [1] "n.chains"        "n.iter"          "n.burnin"        "n.thin"          "n.keep"          "n.sims"          "sims.array"      "sims.list"       "sims.matrix"     "summary"         "mean"            "sd"              "median"          "root.short"      "long.short"      "dimension.short" "indexes.short"   "last.values"     "program"         "model.file"      "isDIC"           "DICbyR"         
## [23] "pD"              "DIC"
# get the summary table
results$BUGSoutput$summary
##                             mean          sd         2.5%          25%          50%         75%        97.5%     Rhat n.eff
## beta.p[1]            -1.28648826  0.50210385  -2.27075955  -1.62610410  -1.28793860  -0.9493074  -0.30189433 1.002671  1000
## beta.p[2]            -0.24076473  0.54996141  -1.27820522  -0.61649516  -0.22810396   0.1297698   0.83880879 1.001518  2300
## beta.p[3]            -1.07087278  0.60162468  -2.29285734  -1.46836223  -1.06507531  -0.6541845   0.05003318 1.002282  1200
## beta.p[4]            -0.15771919  0.55659827  -1.26592312  -0.53297027  -0.15345809   0.2181481   0.92094627 1.001178  3900
## beta.p[5]             1.01122920  0.55404003  -0.06352737   0.63631916   1.01148821   1.3809086   2.09951188 1.001628  2100
## beta.p[6]             0.74357446  0.47805187  -0.17930336   0.42339348   0.73840956   1.0563668   1.70837352 1.002625  1000
## beta.p[7]             1.08461211  0.46615272   0.19529402   0.75995514   1.06688509   1.3979373   1.99944522 1.004918   470
## beta.psi[1]           1.34660245  0.86578879   0.18229102   0.80416706   1.19970255   1.7071364   3.34246844 1.041998   160
## beta.psi[2]          -1.18292377  1.22258027  -3.31512995  -1.70532162  -1.16860699  -0.6744814   0.39724622 1.090366   110
## deviance            200.45494559 15.89471465 174.26665645 188.87135496 199.23083409 210.3887735 235.18932473 1.009177   370
## occ.sites            46.51111111  5.62115136  38.00000000  42.00000000  46.00000000  50.0000000  59.00000000 1.012942   330
## p[1]                  0.22784402  0.08582972   0.09357377   0.16436476   0.21620193   0.2790241   0.42509446 1.002680  1000
## p[2]                  0.22784402  0.08582972   0.09357377   0.16436476   0.21620193   0.2790241   0.42509446 1.002680  1000
## p[3]                  0.22784402  0.08582972   0.09357377   0.16436476   0.21620193   0.2790241   0.42509446 1.002680  1000
## p[4]                  0.22784402  0.08582972   0.09357377   0.16436476   0.21620193   0.2790241   0.42509446 1.002680  1000
## p[5]                  0.22784402  0.08582972   0.09357377   0.16436476   0.21620193   0.2790241   0.42509446 1.002680  1000
## p[6]                  0.22784402  0.08582972   0.09357377   0.16436476   0.21620193   0.2790241   0.42509446 1.002680  1000
## p[7]                  0.22784402  0.08582972   0.09357377   0.16436476   0.21620193   0.2790241   0.42509446 1.002680  1000
## p[8]                  0.22784402  0.08582972   0.09357377   0.16436476   0.21620193   0.2790241   0.42509446 1.002680  1000
## p[9]                  0.22784402  0.08582972   0.09357377   0.16436476   0.21620193   0.2790241   0.42509446 1.002680  1000
## p[10]                 0.22784402  0.08582972   0.09357377   0.16436476   0.21620193   0.2790241   0.42509446 1.002680  1000
## p[11]                 0.22784402  0.08582972   0.09357377   0.16436476   0.21620193   0.2790241   0.42509446 1.002680  1000
## p[12]                 0.22784402  0.08582972   0.09357377   0.16436476   0.21620193   0.2790241   0.42509446 1.002680  1000
## p[13]                 0.22784402  0.08582972   0.09357377   0.16436476   0.21620193   0.2790241   0.42509446 1.002680  1000
## p[14]                 0.22784402  0.08582972   0.09357377   0.16436476   0.21620193   0.2790241   0.42509446 1.002680  1000
## p[15]                 0.22784402  0.08582972   0.09357377   0.16436476   0.21620193   0.2790241   0.42509446 1.002680  1000
## p[16]                 0.22784402  0.08582972   0.09357377   0.16436476   0.21620193   0.2790241   0.42509446 1.002680  1000
## p[17]                 0.22784402  0.08582972   0.09357377   0.16436476   0.21620193   0.2790241   0.42509446 1.002680  1000
## p[18]                 0.22784402  0.08582972   0.09357377   0.16436476   0.21620193   0.2790241   0.42509446 1.002680  1000
## p[19]                 0.22784402  0.08582972   0.09357377   0.16436476   0.21620193   0.2790241   0.42509446 1.002680  1000
## p[20]                 0.22784402  0.08582972   0.09357377   0.16436476   0.21620193   0.2790241   0.42509446 1.002680  1000
## p[21]                 0.22784402  0.08582972   0.09357377   0.16436476   0.21620193   0.2790241   0.42509446 1.002680  1000
## p[22]                 0.37500122  0.11696783   0.17320356   0.28923530   0.36508990   0.4520737   0.62621388 1.000864  4500
## p[23]                 0.37500122  0.11696783   0.17320356   0.28923530   0.36508990   0.4520737   0.62621388 1.000864  4500
## p[24]                 0.37500122  0.11696783   0.17320356   0.28923530   0.36508990   0.4520737   0.62621388 1.000864  4500
## p[25]                 0.37500122  0.11696783   0.17320356   0.28923530   0.36508990   0.4520737   0.62621388 1.000864  4500
## p[26]                 0.37500122  0.11696783   0.17320356   0.28923530   0.36508990   0.4520737   0.62621388 1.000864  4500
## p[27]                 0.37500122  0.11696783   0.17320356   0.28923530   0.36508990   0.4520737   0.62621388 1.000864  4500
## p[28]                 0.37500122  0.11696783   0.17320356   0.28923530   0.36508990   0.4520737   0.62621388 1.000864  4500
## p[29]                 0.37500122  0.11696783   0.17320356   0.28923530   0.36508990   0.4520737   0.62621388 1.000864  4500
## p[30]                 0.37500122  0.11696783   0.17320356   0.28923530   0.36508990   0.4520737   0.62621388 1.000864  4500
## p[31]                 0.37500122  0.11696783   0.17320356   0.28923530   0.36508990   0.4520737   0.62621388 1.000864  4500
## p[32]                 0.37500122  0.11696783   0.17320356   0.28923530   0.36508990   0.4520737   0.62621388 1.000864  4500
## p[33]                 0.37500122  0.11696783   0.17320356   0.28923530   0.36508990   0.4520737   0.62621388 1.000864  4500
## p[34]                 0.45213130  0.11084316   0.24533499   0.37194265   0.44918537   0.5290100   0.66960071 1.001403  2700
## p[35]                 0.45213130  0.11084316   0.24533499   0.37194265   0.44918537   0.5290100   0.66960071 1.001403  2700
## p[36]                 0.45213130  0.11084316   0.24533499   0.37194265   0.44918537   0.5290100   0.66960071 1.001403  2700
## p[37]                 0.45213130  0.11084316   0.24533499   0.37194265   0.44918537   0.5290100   0.66960071 1.001403  2700
## p[38]                 0.45213130  0.11084316   0.24533499   0.37194265   0.44918537   0.5290100   0.66960071 1.001403  2700
## p[39]                 0.45213130  0.11084316   0.24533499   0.37194265   0.44918537   0.5290100   0.66960071 1.001403  2700
## p[40]                 0.45213130  0.11084316   0.24533499   0.37194265   0.44918537   0.5290100   0.66960071 1.001403  2700
## p[41]                 0.45213130  0.11084316   0.24533499   0.37194265   0.44918537   0.5290100   0.66960071 1.001403  2700
## p[42]                 0.45213130  0.11084316   0.24533499   0.37194265   0.44918537   0.5290100   0.66960071 1.001403  2700
## p[43]                 0.45213130  0.11084316   0.24533499   0.37194265   0.44918537   0.5290100   0.66960071 1.001403  2700
## p[44]                 0.45213130  0.11084316   0.24533499   0.37194265   0.44918537   0.5290100   0.66960071 1.001403  2700
## p[45]                 0.45213130  0.11084316   0.24533499   0.37194265   0.44918537   0.5290100   0.66960071 1.001403  2700
## p[46]                 0.45213130  0.11084316   0.24533499   0.37194265   0.44918537   0.5290100   0.66960071 1.001403  2700
## p[47]                 0.45213130  0.11084316   0.24533499   0.37194265   0.44918537   0.5290100   0.66960071 1.001403  2700
## p[48]                 0.45213130  0.11084316   0.24533499   0.37194265   0.44918537   0.5290100   0.66960071 1.001403  2700
## p[49]                 0.45213130  0.11084316   0.24533499   0.37194265   0.44918537   0.5290100   0.66960071 1.001403  2700
## p[50]                 0.45213130  0.11084316   0.24533499   0.37194265   0.44918537   0.5290100   0.66960071 1.001403  2700
## p[51]                 0.45213130  0.11084316   0.24533499   0.37194265   0.44918537   0.5290100   0.66960071 1.001403  2700
## p[52]                 0.45213130  0.11084316   0.24533499   0.37194265   0.44918537   0.5290100   0.66960071 1.001403  2700
## p[53]                 0.45213130  0.11084316   0.24533499   0.37194265   0.44918537   0.5290100   0.66960071 1.001403  2700
## p[54]                 0.39747568  0.11818822   0.18923622   0.31120975   0.39042104   0.4776863   0.63972321 1.002359  1200
## p[55]                 0.39747568  0.11818822   0.18923622   0.31120975   0.39042104   0.4776863   0.63972321 1.002359  1200
## p[56]                 0.39747568  0.11818822   0.18923622   0.31120975   0.39042104   0.4776863   0.63972321 1.002359  1200
## p[57]                 0.39747568  0.11818822   0.18923622   0.31120975   0.39042104   0.4776863   0.63972321 1.002359  1200
## p[58]                 0.39747568  0.11818822   0.18923622   0.31120975   0.39042104   0.4776863   0.63972321 1.002359  1200
## p[59]                 0.39747568  0.11818822   0.18923622   0.31120975   0.39042104   0.4776863   0.63972321 1.002359  1200
## p[60]                 0.39747568  0.11818822   0.18923622   0.31120975   0.39042104   0.4776863   0.63972321 1.002359  1200
## p[61]                 0.39747568  0.11818822   0.18923622   0.31120975   0.39042104   0.4776863   0.63972321 1.002359  1200
## p[62]                 0.39747568  0.11818822   0.18923622   0.31120975   0.39042104   0.4776863   0.63972321 1.002359  1200
## p[63]                 0.39747568  0.11818822   0.18923622   0.31120975   0.39042104   0.4776863   0.63972321 1.002359  1200
## p[64]                 0.39747568  0.11818822   0.18923622   0.31120975   0.39042104   0.4776863   0.63972321 1.002359  1200
## p[65]                 0.39747568  0.11818822   0.18923622   0.31120975   0.39042104   0.4776863   0.63972321 1.002359  1200
## p[66]                 0.39747568  0.11818822   0.18923622   0.31120975   0.39042104   0.4776863   0.63972321 1.002359  1200
## p[67]                 0.39747568  0.11818822   0.18923622   0.31120975   0.39042104   0.4776863   0.63972321 1.002359  1200
## p[68]                 0.39747568  0.11818822   0.18923622   0.31120975   0.39042104   0.4776863   0.63972321 1.002359  1200
## p[69]                 0.39747568  0.11818822   0.18923622   0.31120975   0.39042104   0.4776863   0.63972321 1.002359  1200
## p[70]                 0.39747568  0.11818822   0.18923622   0.31120975   0.39042104   0.4776863   0.63972321 1.002359  1200
## p[71]                 0.39747568  0.11818822   0.18923622   0.31120975   0.39042104   0.4776863   0.63972321 1.002359  1200
## p[72]                 0.39747568  0.11818822   0.18923622   0.31120975   0.39042104   0.4776863   0.63972321 1.002359  1200
## p[73]                 0.39747568  0.11818822   0.18923622   0.31120975   0.39042104   0.4776863   0.63972321 1.002359  1200
## p[74]                 0.19200625  0.08272862   0.06510730   0.13095168   0.17980940   0.2391891   0.38183026 1.000977  4500
## p[75]                 0.19200625  0.08272862   0.06510730   0.13095168   0.17980940   0.2391891   0.38183026 1.000977  4500
## p[76]                 0.19200625  0.08272862   0.06510730   0.13095168   0.17980940   0.2391891   0.38183026 1.000977  4500
## p[77]                 0.19200625  0.08272862   0.06510730   0.13095168   0.17980940   0.2391891   0.38183026 1.000977  4500
## p[78]                 0.19200625  0.08272862   0.06510730   0.13095168   0.17980940   0.2391891   0.38183026 1.000977  4500
## p[79]                 0.19200625  0.08272862   0.06510730   0.13095168   0.17980940   0.2391891   0.38183026 1.000977  4500
## p[80]                 0.19200625  0.08272862   0.06510730   0.13095168   0.17980940   0.2391891   0.38183026 1.000977  4500
## p[81]                 0.19200625  0.08272862   0.06510730   0.13095168   0.17980940   0.2391891   0.38183026 1.000977  4500
## p[82]                 0.19200625  0.08272862   0.06510730   0.13095168   0.17980940   0.2391891   0.38183026 1.000977  4500
## p[83]                 0.19200625  0.08272862   0.06510730   0.13095168   0.17980940   0.2391891   0.38183026 1.000977  4500
## p[84]                 0.19200625  0.08272862   0.06510730   0.13095168   0.17980940   0.2391891   0.38183026 1.000977  4500
## p[85]                 0.19200625  0.08272862   0.06510730   0.13095168   0.17980940   0.2391891   0.38183026 1.000977  4500
## p[86]                 0.19200625  0.08272862   0.06510730   0.13095168   0.17980940   0.2391891   0.38183026 1.000977  4500
## p[87]                 0.19200625  0.08272862   0.06510730   0.13095168   0.17980940   0.2391891   0.38183026 1.000977  4500
## p[88]                 0.19200625  0.08272862   0.06510730   0.13095168   0.17980940   0.2391891   0.38183026 1.000977  4500
## p[89]                 0.19200625  0.08272862   0.06510730   0.13095168   0.17980940   0.2391891   0.38183026 1.000977  4500
## p[90]                 0.19200625  0.08272862   0.06510730   0.13095168   0.17980940   0.2391891   0.38183026 1.000977  4500
## p[91]                 0.32233810  0.10120878   0.14622744   0.24817880   0.31695277   0.3877725   0.53618701 1.001314  3100
## p[92]                 0.32233810  0.10120878   0.14622744   0.24817880   0.31695277   0.3877725   0.53618701 1.001314  3100
## p[93]                 0.32233810  0.10120878   0.14622744   0.24817880   0.31695277   0.3877725   0.53618701 1.001314  3100
## p[94]                 0.32233810  0.10120878   0.14622744   0.24817880   0.31695277   0.3877725   0.53618701 1.001314  3100
## p[95]                 0.32233810  0.10120878   0.14622744   0.24817880   0.31695277   0.3877725   0.53618701 1.001314  3100
## p[96]                 0.32233810  0.10120878   0.14622744   0.24817880   0.31695277   0.3877725   0.53618701 1.001314  3100
## p[97]                 0.32233810  0.10120878   0.14622744   0.24817880   0.31695277   0.3877725   0.53618701 1.001314  3100
## p[98]                 0.32233810  0.10120878   0.14622744   0.24817880   0.31695277   0.3877725   0.53618701 1.001314  3100
## p[99]                 0.32233810  0.10120878   0.14622744   0.24817880   0.31695277   0.3877725   0.53618701 1.001314  3100
## p[100]                0.32233810  0.10120878   0.14622744   0.24817880   0.31695277   0.3877725   0.53618701 1.001314  3100
## p[101]                0.32233810  0.10120878   0.14622744   0.24817880   0.31695277   0.3877725   0.53618701 1.001314  3100
## p[102]                0.32233810  0.10120878   0.14622744   0.24817880   0.31695277   0.3877725   0.53618701 1.001314  3100
## p[103]                0.32233810  0.10120878   0.14622744   0.24817880   0.31695277   0.3877725   0.53618701 1.001314  3100
## p[104]                0.32233810  0.10120878   0.14622744   0.24817880   0.31695277   0.3877725   0.53618701 1.001314  3100
## p[105]                0.32233810  0.10120878   0.14622744   0.24817880   0.31695277   0.3877725   0.53618701 1.001314  3100
## p[106]                0.32233810  0.10120878   0.14622744   0.24817880   0.31695277   0.3877725   0.53618701 1.001314  3100
## p[107]                0.32233810  0.10120878   0.14622744   0.24817880   0.31695277   0.3877725   0.53618701 1.001314  3100
## p[108]                0.32233810  0.10120878   0.14622744   0.24817880   0.31695277   0.3877725   0.53618701 1.001314  3100
## p[109]                0.32233810  0.10120878   0.14622744   0.24817880   0.31695277   0.3877725   0.53618701 1.001314  3100
## p[110]                0.32233810  0.10120878   0.14622744   0.24817880   0.31695277   0.3877725   0.53618701 1.001314  3100
## p[111]                0.18008111  0.08039099   0.05827854   0.12083231   0.16896783   0.2245155   0.37239759 1.002756   960
## p[112]                0.18008111  0.08039099   0.05827854   0.12083231   0.16896783   0.2245155   0.37239759 1.002756   960
## p[113]                0.18008111  0.08039099   0.05827854   0.12083231   0.16896783   0.2245155   0.37239759 1.002756   960
## p[114]                0.18008111  0.08039099   0.05827854   0.12083231   0.16896783   0.2245155   0.37239759 1.002756   960
## p[115]                0.18008111  0.08039099   0.05827854   0.12083231   0.16896783   0.2245155   0.37239759 1.002756   960
## p[116]                0.18008111  0.08039099   0.05827854   0.12083231   0.16896783   0.2245155   0.37239759 1.002756   960
## p[117]                0.18008111  0.08039099   0.05827854   0.12083231   0.16896783   0.2245155   0.37239759 1.002756   960
## p[118]                0.18008111  0.08039099   0.05827854   0.12083231   0.16896783   0.2245155   0.37239759 1.002756   960
## p[119]                0.18008111  0.08039099   0.05827854   0.12083231   0.16896783   0.2245155   0.37239759 1.002756   960
## p[120]                0.18008111  0.08039099   0.05827854   0.12083231   0.16896783   0.2245155   0.37239759 1.002756   960
## p[121]                0.18008111  0.08039099   0.05827854   0.12083231   0.16896783   0.2245155   0.37239759 1.002756   960
## p[122]                0.18008111  0.08039099   0.05827854   0.12083231   0.16896783   0.2245155   0.37239759 1.002756   960
## p[123]                0.18008111  0.08039099   0.05827854   0.12083231   0.16896783   0.2245155   0.37239759 1.002756   960
## p[124]                0.18008111  0.08039099   0.05827854   0.12083231   0.16896783   0.2245155   0.37239759 1.002756   960
## p[125]                0.18008111  0.08039099   0.05827854   0.12083231   0.16896783   0.2245155   0.37239759 1.002756   960
## p[126]                0.18008111  0.08039099   0.05827854   0.12083231   0.16896783   0.2245155   0.37239759 1.002756   960
## p[127]                0.18008111  0.08039099   0.05827854   0.12083231   0.16896783   0.2245155   0.37239759 1.002756   960
## p[128]                0.18008111  0.08039099   0.05827854   0.12083231   0.16896783   0.2245155   0.37239759 1.002756   960
## p[129]                0.18008111  0.08039099   0.05827854   0.12083231   0.16896783   0.2245155   0.37239759 1.002756   960
## p[130]                0.18008111  0.08039099   0.05827854   0.12083231   0.16896783   0.2245155   0.37239759 1.002756   960
## p[131]                0.23220772  0.09307494   0.08393801   0.16501708   0.22021223   0.2890252   0.44319660 1.005174   460
## p[132]                0.23220772  0.09307494   0.08393801   0.16501708   0.22021223   0.2890252   0.44319660 1.005174   460
## p[133]                0.23220772  0.09307494   0.08393801   0.16501708   0.22021223   0.2890252   0.44319660 1.005174   460
## p[134]                0.23220772  0.09307494   0.08393801   0.16501708   0.22021223   0.2890252   0.44319660 1.005174   460
## p[135]                0.23220772  0.09307494   0.08393801   0.16501708   0.22021223   0.2890252   0.44319660 1.005174   460
## p[136]                0.23220772  0.09307494   0.08393801   0.16501708   0.22021223   0.2890252   0.44319660 1.005174   460
## p[137]                0.23220772  0.09307494   0.08393801   0.16501708   0.22021223   0.2890252   0.44319660 1.005174   460
## p[138]                0.23220772  0.09307494   0.08393801   0.16501708   0.22021223   0.2890252   0.44319660 1.005174   460
## p[139]                0.23220772  0.09307494   0.08393801   0.16501708   0.22021223   0.2890252   0.44319660 1.005174   460
## p[140]                0.23220772  0.09307494   0.08393801   0.16501708   0.22021223   0.2890252   0.44319660 1.005174   460
## p[141]                0.23220772  0.09307494   0.08393801   0.16501708   0.22021223   0.2890252   0.44319660 1.005174   460
## p[142]                0.23220772  0.09307494   0.08393801   0.16501708   0.22021223   0.2890252   0.44319660 1.005174   460
## p[143]                0.23220772  0.09307494   0.08393801   0.16501708   0.22021223   0.2890252   0.44319660 1.005174   460
## p[144]                0.23220772  0.09307494   0.08393801   0.16501708   0.22021223   0.2890252   0.44319660 1.005174   460
## p[145]                0.23220772  0.09307494   0.08393801   0.16501708   0.22021223   0.2890252   0.44319660 1.005174   460
## p[146]                0.23220772  0.09307494   0.08393801   0.16501708   0.22021223   0.2890252   0.44319660 1.005174   460
## p[147]                0.23220772  0.09307494   0.08393801   0.16501708   0.22021223   0.2890252   0.44319660 1.005174   460
## p[148]                0.23220772  0.09307494   0.08393801   0.16501708   0.22021223   0.2890252   0.44319660 1.005174   460
## p[149]                0.23220772  0.09307494   0.08393801   0.16501708   0.22021223   0.2890252   0.44319660 1.005174   460
## p[150]                0.23220772  0.09307494   0.08393801   0.16501708   0.22021223   0.2890252   0.44319660 1.005174   460
## p[151]                0.09733179  0.04981299   0.02712114   0.06049829   0.08868028   0.1233594   0.21800016 1.001117  4400
## p[152]                0.09733179  0.04981299   0.02712114   0.06049829   0.08868028   0.1233594   0.21800016 1.001117  4400
## p[153]                0.09733179  0.04981299   0.02712114   0.06049829   0.08868028   0.1233594   0.21800016 1.001117  4400
## p[154]                0.09733179  0.04981299   0.02712114   0.06049829   0.08868028   0.1233594   0.21800016 1.001117  4400
## p[155]                0.09733179  0.04981299   0.02712114   0.06049829   0.08868028   0.1233594   0.21800016 1.001117  4400
## p[156]                0.09733179  0.04981299   0.02712114   0.06049829   0.08868028   0.1233594   0.21800016 1.001117  4400
## p[157]                0.09733179  0.04981299   0.02712114   0.06049829   0.08868028   0.1233594   0.21800016 1.001117  4400
## p[158]                0.09733179  0.04981299   0.02712114   0.06049829   0.08868028   0.1233594   0.21800016 1.001117  4400
## p[159]                0.09733179  0.04981299   0.02712114   0.06049829   0.08868028   0.1233594   0.21800016 1.001117  4400
## p[160]                0.09733179  0.04981299   0.02712114   0.06049829   0.08868028   0.1233594   0.21800016 1.001117  4400
## p[161]                0.09733179  0.04981299   0.02712114   0.06049829   0.08868028   0.1233594   0.21800016 1.001117  4400
## p[162]                0.09733179  0.04981299   0.02712114   0.06049829   0.08868028   0.1233594   0.21800016 1.001117  4400
## p[163]                0.09733179  0.04981299   0.02712114   0.06049829   0.08868028   0.1233594   0.21800016 1.001117  4400
## p[164]                0.09733179  0.04981299   0.02712114   0.06049829   0.08868028   0.1233594   0.21800016 1.001117  4400
## p[165]                0.09733179  0.04981299   0.02712114   0.06049829   0.08868028   0.1233594   0.21800016 1.001117  4400
## p[166]                0.09733179  0.04981299   0.02712114   0.06049829   0.08868028   0.1233594   0.21800016 1.001117  4400
## p[167]                0.09733179  0.04981299   0.02712114   0.06049829   0.08868028   0.1233594   0.21800016 1.001117  4400
## p[168]                0.09733179  0.04981299   0.02712114   0.06049829   0.08868028   0.1233594   0.21800016 1.001117  4400
## p[169]                0.09733179  0.04981299   0.02712114   0.06049829   0.08868028   0.1233594   0.21800016 1.001117  4400
## p[170]                0.09733179  0.04981299   0.02712114   0.06049829   0.08868028   0.1233594   0.21800016 1.001117  4400
## p[171]                0.41624212  0.12092748   0.19919566   0.32995187   0.40950411   0.4985963   0.66540760 1.002321  1200
## p[172]                0.41624212  0.12092748   0.19919566   0.32995187   0.40950411   0.4985963   0.66540760 1.002321  1200
## p[173]                0.41624212  0.12092748   0.19919566   0.32995187   0.40950411   0.4985963   0.66540760 1.002321  1200
## p[174]                0.41624212  0.12092748   0.19919566   0.32995187   0.40950411   0.4985963   0.66540760 1.002321  1200
## p[175]                0.41624212  0.12092748   0.19919566   0.32995187   0.40950411   0.4985963   0.66540760 1.002321  1200
## p[176]                0.41624212  0.12092748   0.19919566   0.32995187   0.40950411   0.4985963   0.66540760 1.002321  1200
## p[177]                0.41624212  0.12092748   0.19919566   0.32995187   0.40950411   0.4985963   0.66540760 1.002321  1200
## p[178]                0.41624212  0.12092748   0.19919566   0.32995187   0.40950411   0.4985963   0.66540760 1.002321  1200
## p[179]                0.41624212  0.12092748   0.19919566   0.32995187   0.40950411   0.4985963   0.66540760 1.002321  1200
## p[180]                0.41624212  0.12092748   0.19919566   0.32995187   0.40950411   0.4985963   0.66540760 1.002321  1200
## p[181]                0.41624212  0.12092748   0.19919566   0.32995187   0.40950411   0.4985963   0.66540760 1.002321  1200
## p[182]                0.41624212  0.12092748   0.19919566   0.32995187   0.40950411   0.4985963   0.66540760 1.002321  1200
## p[183]                0.41624212  0.12092748   0.19919566   0.32995187   0.40950411   0.4985963   0.66540760 1.002321  1200
## p[184]                0.41624212  0.12092748   0.19919566   0.32995187   0.40950411   0.4985963   0.66540760 1.002321  1200
## p[185]                0.41624212  0.12092748   0.19919566   0.32995187   0.40950411   0.4985963   0.66540760 1.002321  1200
## p[186]                0.20351781  0.08268499   0.07515674   0.14249134   0.19129409   0.2545719   0.39141302 1.001090  4500
## p[187]                0.20351781  0.08268499   0.07515674   0.14249134   0.19129409   0.2545719   0.39141302 1.001090  4500
## p[188]                0.20351781  0.08268499   0.07515674   0.14249134   0.19129409   0.2545719   0.39141302 1.001090  4500
## p[189]                0.20351781  0.08268499   0.07515674   0.14249134   0.19129409   0.2545719   0.39141302 1.001090  4500
## p[190]                0.20351781  0.08268499   0.07515674   0.14249134   0.19129409   0.2545719   0.39141302 1.001090  4500
## p[191]                0.20351781  0.08268499   0.07515674   0.14249134   0.19129409   0.2545719   0.39141302 1.001090  4500
## p[192]                0.20351781  0.08268499   0.07515674   0.14249134   0.19129409   0.2545719   0.39141302 1.001090  4500
## p[193]                0.20351781  0.08268499   0.07515674   0.14249134   0.19129409   0.2545719   0.39141302 1.001090  4500
## p[194]                0.20351781  0.08268499   0.07515674   0.14249134   0.19129409   0.2545719   0.39141302 1.001090  4500
## p[195]                0.20351781  0.08268499   0.07515674   0.14249134   0.19129409   0.2545719   0.39141302 1.001090  4500
## p[196]                0.20351781  0.08268499   0.07515674   0.14249134   0.19129409   0.2545719   0.39141302 1.001090  4500
## p[197]                0.20351781  0.08268499   0.07515674   0.14249134   0.19129409   0.2545719   0.39141302 1.001090  4500
## p[198]                0.20351781  0.08268499   0.07515674   0.14249134   0.19129409   0.2545719   0.39141302 1.001090  4500
## p[199]                0.20351781  0.08268499   0.07515674   0.14249134   0.19129409   0.2545719   0.39141302 1.001090  4500
## p[200]                0.20351781  0.08268499   0.07515674   0.14249134   0.19129409   0.2545719   0.39141302 1.001090  4500
## p[201]                0.20351781  0.08268499   0.07515674   0.14249134   0.19129409   0.2545719   0.39141302 1.001090  4500
## p[202]                0.20351781  0.08268499   0.07515674   0.14249134   0.19129409   0.2545719   0.39141302 1.001090  4500
## p[203]                0.20351781  0.08268499   0.07515674   0.14249134   0.19129409   0.2545719   0.39141302 1.001090  4500
## p[204]                0.34030010  0.10666014   0.15322672   0.26356413   0.33264734   0.4118400   0.56142938 1.001270  3300
## p[205]                0.34030010  0.10666014   0.15322672   0.26356413   0.33264734   0.4118400   0.56142938 1.001270  3300
## p[206]                0.34030010  0.10666014   0.15322672   0.26356413   0.33264734   0.4118400   0.56142938 1.001270  3300
## p[207]                0.34030010  0.10666014   0.15322672   0.26356413   0.33264734   0.4118400   0.56142938 1.001270  3300
## p[208]                0.34030010  0.10666014   0.15322672   0.26356413   0.33264734   0.4118400   0.56142938 1.001270  3300
## p[209]                0.34030010  0.10666014   0.15322672   0.26356413   0.33264734   0.4118400   0.56142938 1.001270  3300
## p[210]                0.34030010  0.10666014   0.15322672   0.26356413   0.33264734   0.4118400   0.56142938 1.001270  3300
## p[211]                0.34030010  0.10666014   0.15322672   0.26356413   0.33264734   0.4118400   0.56142938 1.001270  3300
## p[212]                0.34030010  0.10666014   0.15322672   0.26356413   0.33264734   0.4118400   0.56142938 1.001270  3300
## p[213]                0.34030010  0.10666014   0.15322672   0.26356413   0.33264734   0.4118400   0.56142938 1.001270  3300
## p[214]                0.34030010  0.10666014   0.15322672   0.26356413   0.33264734   0.4118400   0.56142938 1.001270  3300
## p[215]                0.34030010  0.10666014   0.15322672   0.26356413   0.33264734   0.4118400   0.56142938 1.001270  3300
## p[216]                0.34030010  0.10666014   0.15322672   0.26356413   0.33264734   0.4118400   0.56142938 1.001270  3300
## p[217]                0.34030010  0.10666014   0.15322672   0.26356413   0.33264734   0.4118400   0.56142938 1.001270  3300
## p[218]                0.34030010  0.10666014   0.15322672   0.26356413   0.33264734   0.4118400   0.56142938 1.001270  3300
## p[219]                0.43559764  0.12044783   0.21501548   0.35090960   0.43056665   0.5177159   0.68167099 1.002036  1500
## p[220]                0.43559764  0.12044783   0.21501548   0.35090960   0.43056665   0.5177159   0.68167099 1.002036  1500
## p[221]                0.43559764  0.12044783   0.21501548   0.35090960   0.43056665   0.5177159   0.68167099 1.002036  1500
## p[222]                0.43559764  0.12044783   0.21501548   0.35090960   0.43056665   0.5177159   0.68167099 1.002036  1500
## p[223]                0.43559764  0.12044783   0.21501548   0.35090960   0.43056665   0.5177159   0.68167099 1.002036  1500
## p[224]                0.43559764  0.12044783   0.21501548   0.35090960   0.43056665   0.5177159   0.68167099 1.002036  1500
## p[225]                0.43559764  0.12044783   0.21501548   0.35090960   0.43056665   0.5177159   0.68167099 1.002036  1500
## p[226]                0.43559764  0.12044783   0.21501548   0.35090960   0.43056665   0.5177159   0.68167099 1.002036  1500
## p[227]                0.43559764  0.12044783   0.21501548   0.35090960   0.43056665   0.5177159   0.68167099 1.002036  1500
## p[228]                0.43559764  0.12044783   0.21501548   0.35090960   0.43056665   0.5177159   0.68167099 1.002036  1500
## p[229]                0.43559764  0.12044783   0.21501548   0.35090960   0.43056665   0.5177159   0.68167099 1.002036  1500
## p[230]                0.43559764  0.12044783   0.21501548   0.35090960   0.43056665   0.5177159   0.68167099 1.002036  1500
## p[231]                0.43559764  0.12044783   0.21501548   0.35090960   0.43056665   0.5177159   0.68167099 1.002036  1500
## p[232]                0.43559764  0.12044783   0.21501548   0.35090960   0.43056665   0.5177159   0.68167099 1.002036  1500
## p[233]                0.43559764  0.12044783   0.21501548   0.35090960   0.43056665   0.5177159   0.68167099 1.002036  1500
## p[234]                0.60868564  0.11396527   0.37962262   0.53147962   0.61278752   0.6921507   0.81233950 1.001080  4500
## p[235]                0.60868564  0.11396527   0.37962262   0.53147962   0.61278752   0.6921507   0.81233950 1.001080  4500
## p[236]                0.60868564  0.11396527   0.37962262   0.53147962   0.61278752   0.6921507   0.81233950 1.001080  4500
## p[237]                0.60868564  0.11396527   0.37962262   0.53147962   0.61278752   0.6921507   0.81233950 1.001080  4500
## p[238]                0.60868564  0.11396527   0.37962262   0.53147962   0.61278752   0.6921507   0.81233950 1.001080  4500
## p[239]                0.60868564  0.11396527   0.37962262   0.53147962   0.61278752   0.6921507   0.81233950 1.001080  4500
## p[240]                0.60868564  0.11396527   0.37962262   0.53147962   0.61278752   0.6921507   0.81233950 1.001080  4500
## p[241]                0.60868564  0.11396527   0.37962262   0.53147962   0.61278752   0.6921507   0.81233950 1.001080  4500
## p[242]                0.60868564  0.11396527   0.37962262   0.53147962   0.61278752   0.6921507   0.81233950 1.001080  4500
## p[243]                0.60868564  0.11396527   0.37962262   0.53147962   0.61278752   0.6921507   0.81233950 1.001080  4500
## p[244]                0.60868564  0.11396527   0.37962262   0.53147962   0.61278752   0.6921507   0.81233950 1.001080  4500
## p[245]                0.60868564  0.11396527   0.37962262   0.53147962   0.61278752   0.6921507   0.81233950 1.001080  4500
## p[246]                0.60868564  0.11396527   0.37962262   0.53147962   0.61278752   0.6921507   0.81233950 1.001080  4500
## p[247]                0.60868564  0.11396527   0.37962262   0.53147962   0.61278752   0.6921507   0.81233950 1.001080  4500
## p[248]                0.68147816  0.10741422   0.45306691   0.61124873   0.68764158   0.7613090   0.87200668 1.001729  1900
## p[249]                0.68147816  0.10741422   0.45306691   0.61124873   0.68764158   0.7613090   0.87200668 1.001729  1900
## p[250]                0.68147816  0.10741422   0.45306691   0.61124873   0.68764158   0.7613090   0.87200668 1.001729  1900
## p[251]                0.68147816  0.10741422   0.45306691   0.61124873   0.68764158   0.7613090   0.87200668 1.001729  1900
## p[252]                0.68147816  0.10741422   0.45306691   0.61124873   0.68764158   0.7613090   0.87200668 1.001729  1900
## p[253]                0.68147816  0.10741422   0.45306691   0.61124873   0.68764158   0.7613090   0.87200668 1.001729  1900
## p[254]                0.68147816  0.10741422   0.45306691   0.61124873   0.68764158   0.7613090   0.87200668 1.001729  1900
## p[255]                0.68147816  0.10741422   0.45306691   0.61124873   0.68764158   0.7613090   0.87200668 1.001729  1900
## p[256]                0.68147816  0.10741422   0.45306691   0.61124873   0.68764158   0.7613090   0.87200668 1.001729  1900
## p[257]                0.68147816  0.10741422   0.45306691   0.61124873   0.68764158   0.7613090   0.87200668 1.001729  1900
## p[258]                0.68147816  0.10741422   0.45306691   0.61124873   0.68764158   0.7613090   0.87200668 1.001729  1900
## p[259]                0.68147816  0.10741422   0.45306691   0.61124873   0.68764158   0.7613090   0.87200668 1.001729  1900
## p[260]                0.68147816  0.10741422   0.45306691   0.61124873   0.68764158   0.7613090   0.87200668 1.001729  1900
## p[261]                0.68147816  0.10741422   0.45306691   0.61124873   0.68764158   0.7613090   0.87200668 1.001729  1900
## p[262]                0.68147816  0.10741422   0.45306691   0.61124873   0.68764158   0.7613090   0.87200668 1.001729  1900
## prob.psi.greater.50   0.98955556  0.10167426   1.00000000   1.00000000   1.00000000   1.0000000   1.00000000 1.000674  4500
## psi[1]                0.76616300  0.11013951   0.54544697   0.69086515   0.76847186   0.8464645   0.96585694 1.008235   270
## psi[2]                0.76616300  0.11013951   0.54544697   0.69086515   0.76847186   0.8464645   0.96585694 1.008235   270
## psi[3]                0.76616300  0.11013951   0.54544697   0.69086515   0.76847186   0.8464645   0.96585694 1.008235   270
## psi[4]                0.52097219  0.12598509   0.31072505   0.43473946   0.51017496   0.5917299   0.79322162 1.005145   800
## psi[5]                0.76616300  0.11013951   0.54544697   0.69086515   0.76847186   0.8464645   0.96585694 1.008235   270
## psi[6]                0.52097219  0.12598509   0.31072505   0.43473946   0.51017496   0.5917299   0.79322162 1.005145   800
## psi[7]                0.52097219  0.12598509   0.31072505   0.43473946   0.51017496   0.5917299   0.79322162 1.005145   800
## psi[8]                0.52097219  0.12598509   0.31072505   0.43473946   0.51017496   0.5917299   0.79322162 1.005145   800
## psi[9]                0.52097219  0.12598509   0.31072505   0.43473946   0.51017496   0.5917299   0.79322162 1.005145   800
## psi[10]               0.76616300  0.11013951   0.54544697   0.69086515   0.76847186   0.8464645   0.96585694 1.008235   270
## psi[11]               0.76616300  0.11013951   0.54544697   0.69086515   0.76847186   0.8464645   0.96585694 1.008235   270
## psi[12]               0.76616300  0.11013951   0.54544697   0.69086515   0.76847186   0.8464645   0.96585694 1.008235   270
## psi[13]               0.76616300  0.11013951   0.54544697   0.69086515   0.76847186   0.8464645   0.96585694 1.008235   270
## psi[14]               0.52097219  0.12598509   0.31072505   0.43473946   0.51017496   0.5917299   0.79322162 1.005145   800
## psi[15]               0.52097219  0.12598509   0.31072505   0.43473946   0.51017496   0.5917299   0.79322162 1.005145   800
## psi[16]               0.76616300  0.11013951   0.54544697   0.69086515   0.76847186   0.8464645   0.96585694 1.008235   270
## psi[17]               0.76616300  0.11013951   0.54544697   0.69086515   0.76847186   0.8464645   0.96585694 1.008235   270
## psi[18]               0.52097219  0.12598509   0.31072505   0.43473946   0.51017496   0.5917299   0.79322162 1.005145   800
## psi[19]               0.52097219  0.12598509   0.31072505   0.43473946   0.51017496   0.5917299   0.79322162 1.005145   800
## psi[20]               0.76616300  0.11013951   0.54544697   0.69086515   0.76847186   0.8464645   0.96585694 1.008235   270
## psi[21]               0.76616300  0.11013951   0.54544697   0.69086515   0.76847186   0.8464645   0.96585694 1.008235   270
## psi[22]               0.52097219  0.12598509   0.31072505   0.43473946   0.51017496   0.5917299   0.79322162 1.005145   800
## psi[23]               0.76616300  0.11013951   0.54544697   0.69086515   0.76847186   0.8464645   0.96585694 1.008235   270
## psi[24]               0.52097219  0.12598509   0.31072505   0.43473946   0.51017496   0.5917299   0.79322162 1.005145   800
## psi[25]               0.52097219  0.12598509   0.31072505   0.43473946   0.51017496   0.5917299   0.79322162 1.005145   800
## psi[26]               0.52097219  0.12598509   0.31072505   0.43473946   0.51017496   0.5917299   0.79322162 1.005145   800
## psi[27]               0.52097219  0.12598509   0.31072505   0.43473946   0.51017496   0.5917299   0.79322162 1.005145   800
## psi[28]               0.76616300  0.11013951   0.54544697   0.69086515   0.76847186   0.8464645   0.96585694 1.008235   270
## psi[29]               0.52097219  0.12598509   0.31072505   0.43473946   0.51017496   0.5917299   0.79322162 1.005145   800
## psi[30]               0.52097219  0.12598509   0.31072505   0.43473946   0.51017496   0.5917299   0.79322162 1.005145   800
## psi[31]               0.52097219  0.12598509   0.31072505   0.43473946   0.51017496   0.5917299   0.79322162 1.005145   800
## psi[32]               0.76616300  0.11013951   0.54544697   0.69086515   0.76847186   0.8464645   0.96585694 1.008235   270
## psi[33]               0.52097219  0.12598509   0.31072505   0.43473946   0.51017496   0.5917299   0.79322162 1.005145   800
## psi[34]               0.52097219  0.12598509   0.31072505   0.43473946   0.51017496   0.5917299   0.79322162 1.005145   800
## psi[35]               0.52097219  0.12598509   0.31072505   0.43473946   0.51017496   0.5917299   0.79322162 1.005145   800
## psi[36]               0.52097219  0.12598509   0.31072505   0.43473946   0.51017496   0.5917299   0.79322162 1.005145   800
## psi[37]               0.52097219  0.12598509   0.31072505   0.43473946   0.51017496   0.5917299   0.79322162 1.005145   800
## psi[38]               0.76616300  0.11013951   0.54544697   0.69086515   0.76847186   0.8464645   0.96585694 1.008235   270
## psi[39]               0.52097219  0.12598509   0.31072505   0.43473946   0.51017496   0.5917299   0.79322162 1.005145   800
## psi[40]               0.52097219  0.12598509   0.31072505   0.43473946   0.51017496   0.5917299   0.79322162 1.005145   800
## psi[41]               0.52097219  0.12598509   0.31072505   0.43473946   0.51017496   0.5917299   0.79322162 1.005145   800
## psi[42]               0.76616300  0.11013951   0.54544697   0.69086515   0.76847186   0.8464645   0.96585694 1.008235   270
## psi[43]               0.52097219  0.12598509   0.31072505   0.43473946   0.51017496   0.5917299   0.79322162 1.005145   800
## psi[44]               0.52097219  0.12598509   0.31072505   0.43473946   0.51017496   0.5917299   0.79322162 1.005145   800
## psi[45]               0.52097219  0.12598509   0.31072505   0.43473946   0.51017496   0.5917299   0.79322162 1.005145   800
## psi[46]               0.76616300  0.11013951   0.54544697   0.69086515   0.76847186   0.8464645   0.96585694 1.008235   270
## psi[47]               0.52097219  0.12598509   0.31072505   0.43473946   0.51017496   0.5917299   0.79322162 1.005145   800
## psi[48]               0.76616300  0.11013951   0.54544697   0.69086515   0.76847186   0.8464645   0.96585694 1.008235   270
## psi[49]               0.76616300  0.11013951   0.54544697   0.69086515   0.76847186   0.8464645   0.96585694 1.008235   270
## psi[50]               0.52097219  0.12598509   0.31072505   0.43473946   0.51017496   0.5917299   0.79322162 1.005145   800
## psi[51]               0.76616300  0.11013951   0.54544697   0.69086515   0.76847186   0.8464645   0.96585694 1.008235   270
## psi[52]               0.76616300  0.11013951   0.54544697   0.69086515   0.76847186   0.8464645   0.96585694 1.008235   270
## psi[53]               0.52097219  0.12598509   0.31072505   0.43473946   0.51017496   0.5917299   0.79322162 1.005145   800
## psi[54]               0.76616300  0.11013951   0.54544697   0.69086515   0.76847186   0.8464645   0.96585694 1.008235   270
## psi[55]               0.76616300  0.11013951   0.54544697   0.69086515   0.76847186   0.8464645   0.96585694 1.008235   270
## psi[56]               0.52097219  0.12598509   0.31072505   0.43473946   0.51017496   0.5917299   0.79322162 1.005145   800
## psi[57]               0.76616300  0.11013951   0.54544697   0.69086515   0.76847186   0.8464645   0.96585694 1.008235   270
## psi[58]               0.76616300  0.11013951   0.54544697   0.69086515   0.76847186   0.8464645   0.96585694 1.008235   270
## psi[59]               0.76616300  0.11013951   0.54544697   0.69086515   0.76847186   0.8464645   0.96585694 1.008235   270
## psi[60]               0.76616300  0.11013951   0.54544697   0.69086515   0.76847186   0.8464645   0.96585694 1.008235   270
## psi[61]               0.76616300  0.11013951   0.54544697   0.69086515   0.76847186   0.8464645   0.96585694 1.008235   270
## psi[62]               0.76616300  0.11013951   0.54544697   0.69086515   0.76847186   0.8464645   0.96585694 1.008235   270
## psi[63]               0.52097219  0.12598509   0.31072505   0.43473946   0.51017496   0.5917299   0.79322162 1.005145   800
## psi[64]               0.52097219  0.12598509   0.31072505   0.43473946   0.51017496   0.5917299   0.79322162 1.005145   800
## psi[65]               0.76616300  0.11013951   0.54544697   0.69086515   0.76847186   0.8464645   0.96585694 1.008235   270
## psi[66]               0.76616300  0.11013951   0.54544697   0.69086515   0.76847186   0.8464645   0.96585694 1.008235   270
## psi[67]               0.76616300  0.11013951   0.54544697   0.69086515   0.76847186   0.8464645   0.96585694 1.008235   270
## psi[68]               0.76616300  0.11013951   0.54544697   0.69086515   0.76847186   0.8464645   0.96585694 1.008235   270
## psi[69]               0.52097219  0.12598509   0.31072505   0.43473946   0.51017496   0.5917299   0.79322162 1.005145   800
## psi[70]               0.76616300  0.11013951   0.54544697   0.69086515   0.76847186   0.8464645   0.96585694 1.008235   270
## psi[71]               0.52097219  0.12598509   0.31072505   0.43473946   0.51017496   0.5917299   0.79322162 1.005145   800
## psi[72]               0.52097219  0.12598509   0.31072505   0.43473946   0.51017496   0.5917299   0.79322162 1.005145   800
## z[1]                  0.44488889  0.49700871   0.00000000   0.00000000   0.00000000   1.0000000   1.00000000 1.002872   910
## z[2]                  0.45222222  0.49776736   0.00000000   0.00000000   0.00000000   1.0000000   1.00000000 1.003016   850
## z[3]                  1.00000000  0.00000000   1.00000000   1.00000000   1.00000000   1.0000000   1.00000000 1.000000     1
## z[4]                  0.20711111  0.40528089   0.00000000   0.00000000   0.00000000   0.0000000   1.00000000 1.002409  1100
## z[5]                  0.43711111  0.49608434   0.00000000   0.00000000   0.00000000   1.0000000   1.00000000 1.002974   870
## z[6]                  0.20711111  0.40528089   0.00000000   0.00000000   0.00000000   0.0000000   1.00000000 1.001794  1800
## z[7]                  0.22466667  0.41740900   0.00000000   0.00000000   0.00000000   0.0000000   1.00000000 1.001975  1500
## z[8]                  0.20977778  0.40719517   0.00000000   0.00000000   0.00000000   0.0000000   1.00000000 1.003001   900
## z[9]                  0.21866667  0.41338787   0.00000000   0.00000000   0.00000000   0.0000000   1.00000000 1.001135  4300
## z[10]                 1.00000000  0.00000000   1.00000000   1.00000000   1.00000000   1.0000000   1.00000000 1.000000     1
## z[11]                 1.00000000  0.00000000   1.00000000   1.00000000   1.00000000   1.0000000   1.00000000 1.000000     1
## z[12]                 1.00000000  0.00000000   1.00000000   1.00000000   1.00000000   1.0000000   1.00000000 1.000000     1
## z[13]                 1.00000000  0.00000000   1.00000000   1.00000000   1.00000000   1.0000000   1.00000000 1.000000     1
## z[14]                 0.16688889  0.37291808   0.00000000   0.00000000   0.00000000   0.0000000   1.00000000 1.002624  1200
## z[15]                 1.00000000  0.00000000   1.00000000   1.00000000   1.00000000   1.0000000   1.00000000 1.000000     1
## z[16]                 1.00000000  0.00000000   1.00000000   1.00000000   1.00000000   1.0000000   1.00000000 1.000000     1
## z[17]                 0.49777778  0.50005063   0.00000000   0.00000000   0.00000000   1.0000000   1.00000000 1.001103  4500
## z[18]                 1.00000000  0.00000000   1.00000000   1.00000000   1.00000000   1.0000000   1.00000000 1.000000     1
## z[19]                 0.24688889  0.43124946   0.00000000   0.00000000   0.00000000   0.0000000   1.00000000 1.001233  3500
## z[20]                 0.44111111  0.49657517   0.00000000   0.00000000   0.00000000   1.0000000   1.00000000 1.001495  2400
## z[21]                 0.54600000  0.49793483   0.00000000   0.00000000   1.00000000   1.0000000   1.00000000 1.003239   780
## z[22]                 0.29622222  0.45664095   0.00000000   0.00000000   0.00000000   1.0000000   1.00000000 1.001052  4500
## z[23]                 1.00000000  0.00000000   1.00000000   1.00000000   1.00000000   1.0000000   1.00000000 1.000000     1
## z[24]                 0.28577778  0.45183427   0.00000000   0.00000000   0.00000000   1.0000000   1.00000000 1.001277  3300
## z[25]                 0.31377778  0.46407881   0.00000000   0.00000000   0.00000000   1.0000000   1.00000000 1.000729  4500
## z[26]                 0.30822222  0.46181022   0.00000000   0.00000000   0.00000000   1.0000000   1.00000000 1.000924  4500
## z[27]                 0.31422222  0.46425695   0.00000000   0.00000000   0.00000000   1.0000000   1.00000000 1.001526  2300
## z[28]                 1.00000000  0.00000000   1.00000000   1.00000000   1.00000000   1.0000000   1.00000000 1.000000     1
## z[29]                 0.32266667  0.46754836   0.00000000   0.00000000   0.00000000   1.0000000   1.00000000 1.001273  3300
## z[30]                 0.25666667  0.43684242   0.00000000   0.00000000   0.00000000   1.0000000   1.00000000 1.002538  1100
## z[31]                 0.25266667  0.43458968   0.00000000   0.00000000   0.00000000   1.0000000   1.00000000 1.001555  2200
## z[32]                 0.51777778  0.49973938   0.00000000   0.00000000   1.00000000   1.0000000   1.00000000 1.004131   580
## z[33]                 0.26511111  0.44144141   0.00000000   0.00000000   0.00000000   1.0000000   1.00000000 1.001040  4500
## z[34]                 1.00000000  0.00000000   1.00000000   1.00000000   1.00000000   1.0000000   1.00000000 1.000000     1
## z[35]                 0.13511111  0.34188020   0.00000000   0.00000000   0.00000000   0.0000000   1.00000000 1.006634   620
## z[36]                 0.14022222  0.34725603   0.00000000   0.00000000   0.00000000   0.0000000   1.00000000 1.008233   490
## z[37]                 1.00000000  0.00000000   1.00000000   1.00000000   1.00000000   1.0000000   1.00000000 1.000000     1
## z[38]                 0.46000000  0.49845282   0.00000000   0.00000000   0.00000000   1.0000000   1.00000000 1.001963  1500
## z[39]                 1.00000000  0.00000000   1.00000000   1.00000000   1.00000000   1.0000000   1.00000000 1.000000     1
## z[40]                 0.18844444  0.39111012   0.00000000   0.00000000   0.00000000   0.0000000   1.00000000 1.001119  4400
## z[41]                 1.00000000  0.00000000   1.00000000   1.00000000   1.00000000   1.0000000   1.00000000 1.000000     1
## z[42]                 1.00000000  0.00000000   1.00000000   1.00000000   1.00000000   1.0000000   1.00000000 1.000000     1
## z[43]                 1.00000000  0.00000000   1.00000000   1.00000000   1.00000000   1.0000000   1.00000000 1.000000     1
## z[44]                 1.00000000  0.00000000   1.00000000   1.00000000   1.00000000   1.0000000   1.00000000 1.000000     1
## z[45]                 1.00000000  0.00000000   1.00000000   1.00000000   1.00000000   1.0000000   1.00000000 1.000000     1
## z[46]                 1.00000000  0.00000000   1.00000000   1.00000000   1.00000000   1.0000000   1.00000000 1.000000     1
## z[47]                 1.00000000  0.00000000   1.00000000   1.00000000   1.00000000   1.0000000   1.00000000 1.000000     1
## z[48]                 0.44577778  0.49710649   0.00000000   0.00000000   0.00000000   1.0000000   1.00000000 1.004186   570
## z[49]                 1.00000000  0.00000000   1.00000000   1.00000000   1.00000000   1.0000000   1.00000000 1.000000     1
## z[50]                 1.00000000  0.00000000   1.00000000   1.00000000   1.00000000   1.0000000   1.00000000 1.000000     1
## z[51]                 1.00000000  0.00000000   1.00000000   1.00000000   1.00000000   1.0000000   1.00000000 1.000000     1
## z[52]                 1.00000000  0.00000000   1.00000000   1.00000000   1.00000000   1.0000000   1.00000000 1.000000     1
## z[53]                 1.00000000  0.00000000   1.00000000   1.00000000   1.00000000   1.0000000   1.00000000 1.000000     1
## z[54]                 0.44466667  0.49698401   0.00000000   0.00000000   0.00000000   1.0000000   1.00000000 1.004947   470
## z[55]                 0.45800000  0.49828825   0.00000000   0.00000000   0.00000000   1.0000000   1.00000000 1.001410  2700
## z[56]                 0.20933333  0.40687796   0.00000000   0.00000000   0.00000000   0.0000000   1.00000000 1.006061   470
## z[57]                 1.00000000  0.00000000   1.00000000   1.00000000   1.00000000   1.0000000   1.00000000 1.000000     1
## z[58]                 0.24933333  0.43267519   0.00000000   0.00000000   0.00000000   0.0000000   1.00000000 1.002650  1000
## z[59]                 1.00000000  0.00000000   1.00000000   1.00000000   1.00000000   1.0000000   1.00000000 1.000000     1
## z[60]                 1.00000000  0.00000000   1.00000000   1.00000000   1.00000000   1.0000000   1.00000000 1.000000     1
## z[61]                 1.00000000  0.00000000   1.00000000   1.00000000   1.00000000   1.0000000   1.00000000 1.000000     1
## z[62]                 1.00000000  0.00000000   1.00000000   1.00000000   1.00000000   1.0000000   1.00000000 1.000000     1
## z[63]                 0.18755556  0.39040023   0.00000000   0.00000000   0.00000000   0.0000000   1.00000000 1.000763  4500
## z[64]                 0.18288889  0.38661836   0.00000000   0.00000000   0.00000000   0.0000000   1.00000000 1.002129  1400
## z[65]                 1.00000000  0.00000000   1.00000000   1.00000000   1.00000000   1.0000000   1.00000000 1.000000     1
## z[66]                 0.41955556  0.49354110   0.00000000   0.00000000   0.00000000   1.0000000   1.00000000 1.001230  3500
## z[67]                 1.00000000  0.00000000   1.00000000   1.00000000   1.00000000   1.0000000   1.00000000 1.000000     1
## z[68]                 1.00000000  0.00000000   1.00000000   1.00000000   1.00000000   1.0000000   1.00000000 1.000000     1
## z[69]                 1.00000000  0.00000000   1.00000000   1.00000000   1.00000000   1.0000000   1.00000000 1.000000     1
## z[70]                 0.38066667  0.48560473   0.00000000   0.00000000   0.00000000   1.0000000   1.00000000 1.002842   920
## z[71]                 0.17622222  0.38105146   0.00000000   0.00000000   0.00000000   0.0000000   1.00000000 1.000984  4500
## z[72]                 1.00000000  0.00000000   1.00000000   1.00000000   1.00000000   1.0000000   1.00000000 1.000000     1
#results$BUGSoutput$summary[,c("mean", "sd", "2.5%","97.5%","Rhat", "n.eff")]
#results$BUGSoutput$summary[,c("mean", "sd")]


# get just the means
results$BUGSoutput$mean
## $beta.p
## [1] -1.2864883 -0.2407647 -1.0708728 -0.1577192  1.0112292  0.7435745  1.0846121
## 
## $beta.psi
## [1]  1.346602 -1.182924
## 
## $deviance
## [1] 200.4549
## 
## $occ.sites
## [1] 46.51111
## 
## $p
##   [1] 0.22784402 0.22784402 0.22784402 0.22784402 0.22784402 0.22784402 0.22784402 0.22784402 0.22784402 0.22784402 0.22784402 0.22784402 0.22784402 0.22784402 0.22784402 0.22784402 0.22784402 0.22784402 0.22784402 0.22784402 0.22784402 0.37500122 0.37500122 0.37500122 0.37500122 0.37500122 0.37500122 0.37500122 0.37500122 0.37500122 0.37500122 0.37500122 0.37500122 0.45213130 0.45213130
##  [36] 0.45213130 0.45213130 0.45213130 0.45213130 0.45213130 0.45213130 0.45213130 0.45213130 0.45213130 0.45213130 0.45213130 0.45213130 0.45213130 0.45213130 0.45213130 0.45213130 0.45213130 0.45213130 0.39747568 0.39747568 0.39747568 0.39747568 0.39747568 0.39747568 0.39747568 0.39747568 0.39747568 0.39747568 0.39747568 0.39747568 0.39747568 0.39747568 0.39747568 0.39747568 0.39747568
##  [71] 0.39747568 0.39747568 0.39747568 0.19200625 0.19200625 0.19200625 0.19200625 0.19200625 0.19200625 0.19200625 0.19200625 0.19200625 0.19200625 0.19200625 0.19200625 0.19200625 0.19200625 0.19200625 0.19200625 0.19200625 0.32233810 0.32233810 0.32233810 0.32233810 0.32233810 0.32233810 0.32233810 0.32233810 0.32233810 0.32233810 0.32233810 0.32233810 0.32233810 0.32233810 0.32233810
## [106] 0.32233810 0.32233810 0.32233810 0.32233810 0.32233810 0.18008111 0.18008111 0.18008111 0.18008111 0.18008111 0.18008111 0.18008111 0.18008111 0.18008111 0.18008111 0.18008111 0.18008111 0.18008111 0.18008111 0.18008111 0.18008111 0.18008111 0.18008111 0.18008111 0.18008111 0.23220772 0.23220772 0.23220772 0.23220772 0.23220772 0.23220772 0.23220772 0.23220772 0.23220772 0.23220772
## [141] 0.23220772 0.23220772 0.23220772 0.23220772 0.23220772 0.23220772 0.23220772 0.23220772 0.23220772 0.23220772 0.09733179 0.09733179 0.09733179 0.09733179 0.09733179 0.09733179 0.09733179 0.09733179 0.09733179 0.09733179 0.09733179 0.09733179 0.09733179 0.09733179 0.09733179 0.09733179 0.09733179 0.09733179 0.09733179 0.09733179 0.41624212 0.41624212 0.41624212 0.41624212 0.41624212
## [176] 0.41624212 0.41624212 0.41624212 0.41624212 0.41624212 0.41624212 0.41624212 0.41624212 0.41624212 0.41624212 0.20351781 0.20351781 0.20351781 0.20351781 0.20351781 0.20351781 0.20351781 0.20351781 0.20351781 0.20351781 0.20351781 0.20351781 0.20351781 0.20351781 0.20351781 0.20351781 0.20351781 0.20351781 0.34030010 0.34030010 0.34030010 0.34030010 0.34030010 0.34030010 0.34030010
## [211] 0.34030010 0.34030010 0.34030010 0.34030010 0.34030010 0.34030010 0.34030010 0.34030010 0.43559764 0.43559764 0.43559764 0.43559764 0.43559764 0.43559764 0.43559764 0.43559764 0.43559764 0.43559764 0.43559764 0.43559764 0.43559764 0.43559764 0.43559764 0.60868564 0.60868564 0.60868564 0.60868564 0.60868564 0.60868564 0.60868564 0.60868564 0.60868564 0.60868564 0.60868564 0.60868564
## [246] 0.60868564 0.60868564 0.68147816 0.68147816 0.68147816 0.68147816 0.68147816 0.68147816 0.68147816 0.68147816 0.68147816 0.68147816 0.68147816 0.68147816 0.68147816 0.68147816 0.68147816
## 
## $prob.psi.greater.50
## [1] 0.9895556
## 
## $psi
##  [1] 0.7661630 0.7661630 0.7661630 0.5209722 0.7661630 0.5209722 0.5209722 0.5209722 0.5209722 0.7661630 0.7661630 0.7661630 0.7661630 0.5209722 0.5209722 0.7661630 0.7661630 0.5209722 0.5209722 0.7661630 0.7661630 0.5209722 0.7661630 0.5209722 0.5209722 0.5209722 0.5209722 0.7661630 0.5209722 0.5209722 0.5209722 0.7661630 0.5209722 0.5209722 0.5209722 0.5209722 0.5209722 0.7661630 0.5209722
## [40] 0.5209722 0.5209722 0.7661630 0.5209722 0.5209722 0.5209722 0.7661630 0.5209722 0.7661630 0.7661630 0.5209722 0.7661630 0.7661630 0.5209722 0.7661630 0.7661630 0.5209722 0.7661630 0.7661630 0.7661630 0.7661630 0.7661630 0.7661630 0.5209722 0.5209722 0.7661630 0.7661630 0.7661630 0.7661630 0.5209722 0.7661630 0.5209722 0.5209722
## 
## $z
##  [1] 0.4448889 0.4522222 1.0000000 0.2071111 0.4371111 0.2071111 0.2246667 0.2097778 0.2186667 1.0000000 1.0000000 1.0000000 1.0000000 0.1668889 1.0000000 1.0000000 0.4977778 1.0000000 0.2468889 0.4411111 0.5460000 0.2962222 1.0000000 0.2857778 0.3137778 0.3082222 0.3142222 1.0000000 0.3226667 0.2566667 0.2526667 0.5177778 0.2651111 1.0000000 0.1351111 0.1402222 1.0000000 0.4600000 1.0000000
## [40] 0.1884444 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.4457778 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.4446667 0.4580000 0.2093333 1.0000000 0.2493333 1.0000000 1.0000000 1.0000000 1.0000000 0.1875556 0.1828889 1.0000000 0.4195556 1.0000000 1.0000000 1.0000000 0.3806667 0.1762222 1.0000000
results$BUGSoutput$mean$psi
##  [1] 0.7661630 0.7661630 0.7661630 0.5209722 0.7661630 0.5209722 0.5209722 0.5209722 0.5209722 0.7661630 0.7661630 0.7661630 0.7661630 0.5209722 0.5209722 0.7661630 0.7661630 0.5209722 0.5209722 0.7661630 0.7661630 0.5209722 0.7661630 0.5209722 0.5209722 0.5209722 0.5209722 0.7661630 0.5209722 0.5209722 0.5209722 0.7661630 0.5209722 0.5209722 0.5209722 0.5209722 0.5209722 0.7661630 0.5209722
## [40] 0.5209722 0.5209722 0.7661630 0.5209722 0.5209722 0.5209722 0.7661630 0.5209722 0.7661630 0.7661630 0.5209722 0.7661630 0.7661630 0.5209722 0.7661630 0.7661630 0.5209722 0.7661630 0.7661630 0.7661630 0.7661630 0.7661630 0.7661630 0.5209722 0.5209722 0.7661630 0.7661630 0.7661630 0.7661630 0.5209722 0.7661630 0.5209722 0.5209722
# the results$BUGSoutput$sims.array is a 3-d object [iterations, chains, variables]
dim(results$BUGSoutput$sims.array)
## [1] 1500    3  418
results$BUGSoutput$sims.array[1:5,1,1:10]
##      beta.p[1]    beta.p[2]  beta.p[3]  beta.p[4] beta.p[5] beta.p[6] beta.p[7] beta.psi[1] beta.psi[2] deviance
## [1,] -1.512230 -0.786310845 -1.7145087 -0.4619641 0.3867725 0.9955966 1.6946332   1.6756964  -1.3516317 204.1066
## [2,] -1.605319  0.121099687 -0.7712142  0.4873865 0.9391973 1.0309092 1.3237401   1.1717943  -1.2435747 183.6919
## [3,] -1.465574 -0.400248657 -0.4588490  0.4288056 0.3922997 0.9275046 0.9478107   1.8265315  -1.8881134 202.0890
## [4,] -1.642817 -0.005247888 -0.1340589 -0.9022205 0.4799133 1.2619669 1.3174393   0.4744758   0.2918069 219.9194
## [5,] -1.451131 -0.937844589 -0.3779867 -0.1897276 0.5272606 1.4491767 1.6804554   2.2184760  -2.3229250 211.8200
results$BUGSoutput$sims.array[1:5,1,"psi[1]", drop=FALSE]
## , , psi[1]
## 
##           [,1]
## [1,] 0.8423338
## [2,] 0.7634692
## [3,] 0.8613480
## [4,] 0.6164426
## [5,] 0.9018964
# the results$BUGSoutput$sims.matrix is a 2-d object [iterations, variables] with chains stacked
# on top of each other
dim(results$BUGSoutput$sims.matrix)
## [1] 4500  418
results$BUGSoutput$sims.matrix[1:5,1:10]
##       beta.p[1]  beta.p[2]  beta.p[3]  beta.p[4] beta.p[5] beta.p[6] beta.p[7] beta.psi[1] beta.psi[2] deviance
## [1,] -1.2828344 -0.4206127 -1.2359697 -0.7584135 1.8558444 0.5027223 1.5570419   1.4558672  -0.9309718 191.1028
## [2,] -1.9452667  0.1990594 -0.3973337  1.0838194 2.1520752 0.9349901 1.2505224   0.4360780  -0.2155436 183.4382
## [3,] -0.8407243 -0.6433530 -0.9734311 -0.1672975 1.1809176 0.2236635 0.4217458   0.8013174  -0.4197705 189.9793
## [4,] -1.7914116 -0.8721814 -0.7302754  0.2079305 1.5447251 0.7457507 0.9255172   1.3799072  -0.6528676 217.4484
## [5,] -0.7931401 -1.0454972 -1.4462531 -1.2296746 0.2790527 0.9843038 1.2264833   1.9068344  -1.9387109 200.9594
results$BUGSoutput$sims.matrix[1:5,"psi[1]", drop=FALSE]
##         psi[1]
## [1,] 0.8108998
## [2,] 0.6073241
## [3,] 0.6902562
## [4,] 0.7989761
## [5,] 0.8706631
# make a posterior density plot
plotdata <- data.frame(parm=results$BUGSoutput$sims.matrix[,c("psi[1]","psi[4]")], stringsAsFactors=FALSE) # browse and unbrowsed
head(plotdata)
##   parm.psi.1. parm.psi.4.
## 1   0.8108998   0.6282918
## 2   0.6073241   0.5549112
## 3   0.6902562   0.5942461
## 4   0.7989761   0.6741553
## 5   0.8706631   0.4920316
## 6   0.6765521   0.4244937
plotdata2 <- reshape2::melt(plotdata, variable.name="Site", value.name="prob")
## No id variables; using all as measure variables
head(plotdata2)
##          Site      prob
## 1 parm.psi.1. 0.8108998
## 2 parm.psi.1. 0.6073241
## 3 parm.psi.1. 0.6902562
## 4 parm.psi.1. 0.7989761
## 5 parm.psi.1. 0.8706631
## 6 parm.psi.1. 0.6765521
postplot.parm <- ggplot2::ggplot( data=plotdata2, aes(x=prob, y=..density..))+
  geom_histogram(alpha=0.3)+
  geom_density()+
  ggtitle("Posterior density plot for psi[1] and psi[[4]")+
  facet_wrap(~Site, ncol=1)
postplot.parm
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggsave(plot=postplot.parm, 
       file=paste('psi-posterior-',model.name,'.png',sep=""), h=4, w=6, units="in", dpi=300)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# Get the odds ratio for Browser vs Not Browse
plotdata <- data.frame(parm=results$BUGSoutput$sims.matrix[,c("beta.psi[2]")], stringsAsFactors=FALSE) # browse and unbrowsed
head(plotdata)
##         parm
## 1 -0.9309718
## 2 -0.2155436
## 3 -0.4197705
## 4 -0.6528676
## 5 -1.9387109
## 6 -1.0423241
plotdata$odds.ratio <- exp(plotdata$parm)
range(plotdata$odds.ratio)  # some very large odds ratios
## [1] 1.705940e-05 1.390323e+04
summary(plotdata$odds.ratio)
##      Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
##     0.000     0.182     0.311    18.016     0.509 13903.226
quantile(plotdata$odds.ratio, prob=.98)
##     98% 
## 1.72101
plotdata$odds.ratio[ plotdata$odds.ratio > 5] <- NA
head(plotdata)
##         parm odds.ratio
## 1 -0.9309718  0.3941705
## 2 -0.2155436  0.8061032
## 3 -0.4197705  0.6571976
## 4 -0.6528676  0.5205509
## 5 -1.9387109  0.1438893
## 6 -1.0423241  0.3526342
oddsplot.parm <- ggplot2::ggplot( data=plotdata, aes(x=odds.ratio, y=..density..))+
  geom_histogram(alpha=0.3)+
  geom_density()+
  ggtitle("Odds ratio of occupancy(not browsed):occupancy(browsed)]")
oddsplot.parm
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 50 rows containing non-finite values (stat_bin).
## Warning: Removed 50 rows containing non-finite values (stat_density).

ggsave(plot=postplot.parm, 
       file=paste('odds-psi-posterior-',model.name,'.png',sep=""), h=4, w=6, units="in", dpi=300)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# make a trace plot (notice we use the sims.array here)
plotdata <- data.frame(psi=results$BUGSoutput$sims.array[,,"psi[1]"], stringsAsFactors=FALSE)
plotdata$iteration <- 1:nrow(plotdata)
head(plotdata)
##       psi.1     psi.2     psi.3 iteration
## 1 0.8423338 0.6228555 0.7849696         1
## 2 0.7634692 0.6633186 0.8238258         2
## 3 0.8613480 0.6784891 0.8833036         3
## 4 0.6164426 0.5821840 0.9261826         4
## 5 0.9018964 0.7288919 0.9104778         5
## 6 0.7863184 0.7947837 0.9061637         6
# convert from wide to long format
plotdata2 <- reshape2:::melt.data.frame(data=plotdata, 
                            id.vars="iteration",
                            measure.vars=paste("psi",1:results$BUGSoutput$n.chains,sep="."),
                            variable.name="chain",
                            value.name='psi')
head(plotdata2)
##   iteration chain       psi
## 1         1 psi.1 0.8423338
## 2         2 psi.1 0.7634692
## 3         3 psi.1 0.8613480
## 4         4 psi.1 0.6164426
## 5         5 psi.1 0.9018964
## 6         6 psi.1 0.7863184
traceplot.parm <- ggplot2::ggplot(data=plotdata2, aes(x=iteration, y=psi, color=chain))+
  ggtitle("Trace plot for psi[1]")+
  geom_line(alpha=.2)
traceplot.parm

ggsave(plot=traceplot.parm, 
       file=paste('psi-trace-',model.name,'.png',sep=""), h=4, w=6, units="in", dpi=300)


# autocorrelation plot
# First compute the autocorrelation plot
acf.parm <-acf( results$BUGSoutput$sims.matrix[,"psi[1]"], plot=FALSE)
acf.parm
## 
## Autocorrelations of series 'results$BUGSoutput$sims.matrix[, "psi[1]"]', by lag
## 
##      0      1      2      3      4      5      6      7      8      9     10     11     12     13     14     15     16     17     18     19     20     21     22     23     24     25     26     27     28     29     30     31     32     33     34     35     36 
##  1.000 -0.004 -0.020 -0.019  0.015  0.006 -0.025  0.028 -0.008 -0.014 -0.015 -0.004 -0.020 -0.024 -0.005  0.011 -0.012  0.000 -0.006 -0.008  0.005 -0.034  0.024  0.012  0.025  0.004  0.016  0.014  0.028  0.036  0.008 -0.007  0.007  0.022 -0.009  0.002  0.001
acfplot.parm <- ggplot(data=with(acf.parm, data.frame(lag, acf)), aes(x = lag, y = acf)) +
  ggtitle("Autocorrelation plot for psi[1]")+
  geom_hline(aes(yintercept = 0)) +
  geom_segment(aes(xend = lag, yend = 0))
acfplot.parm

ggsave(plot=acfplot.parm, 
       file=paste("psi-acf-", model.name,".png",sep=""),h=4, w=6, units="in", dpi=300)