# Single Species Single Season Occupancy 

# Weta Example

#  RPresence package

# 2018-08-15 Code contributed by Carl James Schwarz (cschwarz.stat.sfu.cs@gmail.com)
library(readxl)
library(RPresence)
library(ggplot2)

# get the data read in
# Data for detections should be a data frame with rows corresponding to sites
# and columns to visits.
# The usual 1=detected; 0=not detected; NA=not visited is used.

input.history <- readxl::read_excel(file.path("..","weta.xls"),
                                    sheet="detection_histories",
                                    na="-",
                                    col_names=FALSE)  # notice no column names in row 1 of data file. 

# do some basic checks on your data 
# e.g. check number of sites; number of visits etc
nrow(input.history)
## [1] 72
ncol(input.history)
## [1] 5
range(input.history, na.rm=TRUE)
## [1] 0 1
sum(is.na(input.history))
## [1] 98
head(input.history)
## # A tibble: 6 x 5
##    X__1  X__2  X__3  X__4  X__5
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1     0     0     0     0    NA
## 2     0     0     0     0    NA
## 3     0     0     0     1    NA
## 4     0     0     0     0    NA
## 5     0     0     0     0    NA
## 6     0     0     0     0    NA
# Get the site level covariates
site_covar <- readxl::read_excel(file.path("..","weta.xls"),
                                 sheet="site_covar",
                                 na="-",
                                 col_names=TRUE)  # notice col_names in row 1 of table. 
head(site_covar)
## # A tibble: 6 x 3
##   Browsed Unbrowsed BrowseCat
##     <dbl>     <dbl> <chr>    
## 1       1         0 b        
## 2       1         0 b        
## 3       1         0 b        
## 4       0         1 n        
## 5       1         0 b        
## 6       0         1 n
# Create an alternate site level covariate that is a categorical variable rather 
# than indicator variables
site_covar$BrowCat <- site_covar$BrowseCat
xtabs(~BrowCat, data=site_covar,exclude=NULL, na.action=na.pass)
## BrowCat
##  b  n 
## 35 37
head(site_covar)
## # A tibble: 6 x 4
##   Browsed Unbrowsed BrowseCat BrowCat
##     <dbl>     <dbl> <chr>     <chr>  
## 1       1         0 b         b      
## 2       1         0 b         b      
## 3       1         0 b         b      
## 4       0         1 n         n      
## 5       1         0 b         b      
## 6       0         1 n         n
# Get the individual covariates. 
obs1 <- readxl::read_excel(file.path("..","weta.xls"),
                           sheet="Obs1",
                           na="-",
                           col_names=FALSE) 
obs2 <- readxl::read_excel(file.path("..","weta.xls"),
                           sheet="Obs2",
                           na="-",
                           col_names=FALSE) 
obs3 <- readxl::read_excel(file.path("..","weta.xls"),
                           sheet="Obs3",
                           na="-",
                           col_names=FALSE) 

Obs <- obs1*1 + obs2*2 + obs3*3
head(Obs)
##   X__1 X__2 X__3 X__4 X__5
## 1    1    3    2    3   NA
## 2    1    3    2    3   NA
## 3    1    3    2    3   NA
## 4    1    3    2    3   NA
## 5    1    3    2    3   NA
## 6    1    3    2    3   NA
# Observational covariate needs to be "stacked" so that sites1...siteS for survey occastion 1
# are then followed by covariate at survey occastion 2 for sites1...siteS, etc

survey.cov <- data.frame(site=rep(1:nrow(input.history) , ncol(input.history)),
                         visit=as.character(rep(1:ncol(input.history), each=nrow(input.history))),  # notice we make a character 
                         obs1 =as.vector(unlist(obs1)),
                         obs2 =as.vector(unlist(obs2)),
                         obs3 =as.vector(unlist(obs3)),
                         Obs  =paste("O",as.vector(unlist(Obs)),sep=""),    # notice we make a character string
                         stringsAsFactors=FALSE)
survey.cov$Obs[ grepl("NA",survey.cov$Obs)] <- NA
head(survey.cov[,c("visit","site","Obs")],n=100)
##     visit site  Obs
## 1       1    1   O1
## 2       1    2   O1
## 3       1    3   O1
## 4       1    4   O1
## 5       1    5   O1
## 6       1    6   O1
## 7       1    7   O1
## 8       1    8   O1
## 9       1    9   O1
## 10      1   10   O1
## 11      1   11   O1
## 12      1   12   O1
## 13      1   13   O1
## 14      1   14   O1
## 15      1   15   O1
## 16      1   16 <NA>
## 17      1   17 <NA>
## 18      1   18 <NA>
## 19      1   19 <NA>
## 20      1   20   O1
## 21      1   21   O1
## 22      1   22   O1
## 23      1   23   O1
## 24      1   24   O1
## 25      1   25   O1
## 26      1   26   O2
## 27      1   27   O2
## 28      1   28   O2
## 29      1   29   O2
## 30      1   30   O2
## 31      1   31   O2
## 32      1   32   O2
## 33      1   33   O2
## 34      1   34   O2
## 35      1   35   O2
## 36      1   36   O2
## 37      1   37   O2
## 38      1   38 <NA>
## 39      1   39 <NA>
## 40      1   40 <NA>
## 41      1   41 <NA>
## 42      1   42 <NA>
## 43      1   43 <NA>
## 44      1   44 <NA>
## 45      1   45 <NA>
## 46      1   46 <NA>
## 47      1   47 <NA>
## 48      1   48   O3
## 49      1   49   O3
## 50      1   50   O3
## 51      1   51   O3
## 52      1   52   O3
## 53      1   53   O3
## 54      1   54   O3
## 55      1   55   O3
## 56      1   56   O3
## 57      1   57   O3
## 58      1   58   O3
## 59      1   59   O3
## 60      1   60   O3
## 61      1   61   O3
## 62      1   62   O3
## 63      1   63 <NA>
## 64      1   64 <NA>
## 65      1   65 <NA>
## 66      1   66 <NA>
## 67      1   67 <NA>
## 68      1   68   O3
## 69      1   69   O3
## 70      1   70   O3
## 71      1   71   O3
## 72      1   72   O3
## 73      2    1   O3
## 74      2    2   O3
## 75      2    3   O3
## 76      2    4   O3
## 77      2    5   O3
## 78      2    6   O3
## 79      2    7   O3
## 80      2    8   O3
## 81      2    9   O3
## 82      2   10   O3
## 83      2   11   O3
## 84      2   12   O3
## 85      2   13   O3
## 86      2   14   O3
## 87      2   15   O3
## 88      2   16   O3
## 89      2   17   O3
## 90      2   18   O3
## 91      2   19   O3
## 92      2   20   O3
## 93      2   21 <NA>
## 94      2   22 <NA>
## 95      2   23 <NA>
## 96      2   24 <NA>
## 97      2   25 <NA>
## 98      2   26   O1
## 99      2   27   O1
## 100     2   28   O1
str(survey.cov)
## 'data.frame':    360 obs. of  6 variables:
##  $ site : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ visit: chr  "1" "1" "1" "1" ...
##  $ obs1 : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ obs2 : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ obs3 : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ Obs  : chr  "O1" "O1" "O1" "O1" ...
# check that missing values in history and observer covariates align
select <- is.na(as.vector(unlist(input.history)))
survey.cov[select,]
##     site visit obs1 obs2 obs3  Obs
## 16    16     1   NA   NA   NA <NA>
## 17    17     1   NA   NA   NA <NA>
## 18    18     1   NA   NA   NA <NA>
## 19    19     1   NA   NA   NA <NA>
## 38    38     1   NA   NA   NA <NA>
## 39    39     1   NA   NA   NA <NA>
## 40    40     1   NA   NA   NA <NA>
## 41    41     1   NA   NA   NA <NA>
## 42    42     1   NA   NA   NA <NA>
## 43    43     1   NA   NA   NA <NA>
## 44    44     1   NA   NA   NA <NA>
## 45    45     1   NA   NA   NA <NA>
## 46    46     1   NA   NA   NA <NA>
## 47    47     1   NA   NA   NA <NA>
## 63    63     1   NA   NA   NA <NA>
## 64    64     1   NA   NA   NA <NA>
## 65    65     1   NA   NA   NA <NA>
## 66    66     1   NA   NA   NA <NA>
## 67    67     1   NA   NA   NA <NA>
## 93    21     2   NA   NA   NA <NA>
## 94    22     2   NA   NA   NA <NA>
## 95    23     2   NA   NA   NA <NA>
## 96    24     2   NA   NA   NA <NA>
## 97    25     2   NA   NA   NA <NA>
## 115   43     2   NA   NA   NA <NA>
## 116   44     2   NA   NA   NA <NA>
## 117   45     2   NA   NA   NA <NA>
## 118   46     2   NA   NA   NA <NA>
## 119   47     2   NA   NA   NA <NA>
## 140   68     2   NA   NA   NA <NA>
## 141   69     2   NA   NA   NA <NA>
## 142   70     2   NA   NA   NA <NA>
## 143   71     2   NA   NA   NA <NA>
## 144   72     2   NA   NA   NA <NA>
## 155   11     3   NA   NA   NA <NA>
## 156   12     3   NA   NA   NA <NA>
## 157   13     3   NA   NA   NA <NA>
## 158   14     3   NA   NA   NA <NA>
## 159   15     3   NA   NA   NA <NA>
## 182   38     3   NA   NA   NA <NA>
## 183   39     3   NA   NA   NA <NA>
## 202   58     3   NA   NA   NA <NA>
## 203   59     3   NA   NA   NA <NA>
## 204   60     3   NA   NA   NA <NA>
## 205   61     3   NA   NA   NA <NA>
## 206   62     3   NA   NA   NA <NA>
## 232   16     4   NA   NA   NA <NA>
## 233   17     4   NA   NA   NA <NA>
## 234   18     4   NA   NA   NA <NA>
## 235   19     4   NA   NA   NA <NA>
## 236   20     4   NA   NA   NA <NA>
## 237   21     4   NA   NA   NA <NA>
## 238   22     4   NA   NA   NA <NA>
## 239   23     4   NA   NA   NA <NA>
## 240   24     4   NA   NA   NA <NA>
## 241   25     4   NA   NA   NA <NA>
## 242   26     4   NA   NA   NA <NA>
## 243   27     4   NA   NA   NA <NA>
## 244   28     4   NA   NA   NA <NA>
## 245   29     4   NA   NA   NA <NA>
## 279   63     4   NA   NA   NA <NA>
## 280   64     4   NA   NA   NA <NA>
## 281   65     4   NA   NA   NA <NA>
## 282   66     4   NA   NA   NA <NA>
## 283   67     4   NA   NA   NA <NA>
## 284   68     4   NA   NA   NA <NA>
## 285   69     4   NA   NA   NA <NA>
## 286   70     4   NA   NA   NA <NA>
## 287   71     4   NA   NA   NA <NA>
## 288   72     4   NA   NA   NA <NA>
## 289    1     5   NA   NA   NA <NA>
## 290    2     5   NA   NA   NA <NA>
## 291    3     5   NA   NA   NA <NA>
## 292    4     5   NA   NA   NA <NA>
## 293    5     5   NA   NA   NA <NA>
## 294    6     5   NA   NA   NA <NA>
## 295    7     5   NA   NA   NA <NA>
## 296    8     5   NA   NA   NA <NA>
## 297    9     5   NA   NA   NA <NA>
## 298   10     5   NA   NA   NA <NA>
## 314   26     5   NA   NA   NA <NA>
## 315   27     5   NA   NA   NA <NA>
## 316   28     5   NA   NA   NA <NA>
## 317   29     5   NA   NA   NA <NA>
## 318   30     5   NA   NA   NA <NA>
## 319   31     5   NA   NA   NA <NA>
## 320   32     5   NA   NA   NA <NA>
## 321   33     5   NA   NA   NA <NA>
## 336   48     5   NA   NA   NA <NA>
## 337   49     5   NA   NA   NA <NA>
## 338   50     5   NA   NA   NA <NA>
## 339   51     5   NA   NA   NA <NA>
## 340   52     5   NA   NA   NA <NA>
## 341   53     5   NA   NA   NA <NA>
## 342   54     5   NA   NA   NA <NA>
## 343   55     5   NA   NA   NA <NA>
## 344   56     5   NA   NA   NA <NA>
## 345   57     5   NA   NA   NA <NA>
sum(is.na(survey.cov[!select,]))
## [1] 0
# Create the *.pao file
weta.pao <- RPresence::createPao(input.history,
                                 unitcov=site_covar,
                                 survcov=survey.cov,
                                 title='weta SSSS')
weta.pao
## $nunits
## [1] 72
## 
## $nsurveys
## [1] 5
## 
## $nseasons
## [1] 1
## 
## $nmethods
## [1] 1
## 
## $det.data
## # A tibble: 72 x 5
##     X__1  X__2  X__3  X__4  X__5
##    <dbl> <dbl> <dbl> <dbl> <dbl>
##  1     0     0     0     0    NA
##  2     0     0     0     0    NA
##  3     0     0     0     1    NA
##  4     0     0     0     0    NA
##  5     0     0     0     0    NA
##  6     0     0     0     0    NA
##  7     0     0     0     0    NA
##  8     0     0     0     0    NA
##  9     0     0     0     0    NA
## 10     1     1     0     0    NA
## # ... with 62 more rows
## 
## $nunitcov
## [1] 4
## 
## $unitcov
## # A tibble: 72 x 4
##    Browsed Unbrowsed BrowseCat BrowCat
##      <dbl>     <dbl> <chr>     <chr>  
##  1       1         0 b         b      
##  2       1         0 b         b      
##  3       1         0 b         b      
##  4       0         1 n         n      
##  5       1         0 b         b      
##  6       0         1 n         n      
##  7       0         1 n         n      
##  8       0         1 n         n      
##  9       0         1 n         n      
## 10       1         0 b         b      
## # ... with 62 more rows
## 
## $nsurvcov
## [1] 7
## 
## $survcov
##     site visit obs1 obs2 obs3  Obs SURVEY
## 1      1     1    1    0    0   O1      1
## 2      2     1    1    0    0   O1      1
## 3      3     1    1    0    0   O1      1
## 4      4     1    1    0    0   O1      1
## 5      5     1    1    0    0   O1      1
## 6      6     1    1    0    0   O1      1
## 7      7     1    1    0    0   O1      1
## 8      8     1    1    0    0   O1      1
## 9      9     1    1    0    0   O1      1
## 10    10     1    1    0    0   O1      1
## 11    11     1    1    0    0   O1      1
## 12    12     1    1    0    0   O1      1
## 13    13     1    1    0    0   O1      1
## 14    14     1    1    0    0   O1      1
## 15    15     1    1    0    0   O1      1
## 16    16     1   NA   NA   NA <NA>      1
## 17    17     1   NA   NA   NA <NA>      1
## 18    18     1   NA   NA   NA <NA>      1
## 19    19     1   NA   NA   NA <NA>      1
## 20    20     1    1    0    0   O1      1
## 21    21     1    1    0    0   O1      1
## 22    22     1    1    0    0   O1      1
## 23    23     1    1    0    0   O1      1
## 24    24     1    1    0    0   O1      1
## 25    25     1    1    0    0   O1      1
## 26    26     1    0    1    0   O2      1
## 27    27     1    0    1    0   O2      1
## 28    28     1    0    1    0   O2      1
## 29    29     1    0    1    0   O2      1
## 30    30     1    0    1    0   O2      1
## 31    31     1    0    1    0   O2      1
## 32    32     1    0    1    0   O2      1
## 33    33     1    0    1    0   O2      1
## 34    34     1    0    1    0   O2      1
## 35    35     1    0    1    0   O2      1
## 36    36     1    0    1    0   O2      1
## 37    37     1    0    1    0   O2      1
## 38    38     1   NA   NA   NA <NA>      1
## 39    39     1   NA   NA   NA <NA>      1
## 40    40     1   NA   NA   NA <NA>      1
## 41    41     1   NA   NA   NA <NA>      1
## 42    42     1   NA   NA   NA <NA>      1
## 43    43     1   NA   NA   NA <NA>      1
## 44    44     1   NA   NA   NA <NA>      1
## 45    45     1   NA   NA   NA <NA>      1
## 46    46     1   NA   NA   NA <NA>      1
## 47    47     1   NA   NA   NA <NA>      1
## 48    48     1    0    0    1   O3      1
## 49    49     1    0    0    1   O3      1
## 50    50     1    0    0    1   O3      1
## 51    51     1    0    0    1   O3      1
## 52    52     1    0    0    1   O3      1
## 53    53     1    0    0    1   O3      1
## 54    54     1    0    0    1   O3      1
## 55    55     1    0    0    1   O3      1
## 56    56     1    0    0    1   O3      1
## 57    57     1    0    0    1   O3      1
## 58    58     1    0    0    1   O3      1
## 59    59     1    0    0    1   O3      1
## 60    60     1    0    0    1   O3      1
## 61    61     1    0    0    1   O3      1
## 62    62     1    0    0    1   O3      1
## 63    63     1   NA   NA   NA <NA>      1
## 64    64     1   NA   NA   NA <NA>      1
## 65    65     1   NA   NA   NA <NA>      1
## 66    66     1   NA   NA   NA <NA>      1
## 67    67     1   NA   NA   NA <NA>      1
## 68    68     1    0    0    1   O3      1
## 69    69     1    0    0    1   O3      1
## 70    70     1    0    0    1   O3      1
## 71    71     1    0    0    1   O3      1
## 72    72     1    0    0    1   O3      1
## 73     1     2    0    0    1   O3      2
## 74     2     2    0    0    1   O3      2
## 75     3     2    0    0    1   O3      2
## 76     4     2    0    0    1   O3      2
## 77     5     2    0    0    1   O3      2
## 78     6     2    0    0    1   O3      2
## 79     7     2    0    0    1   O3      2
## 80     8     2    0    0    1   O3      2
## 81     9     2    0    0    1   O3      2
## 82    10     2    0    0    1   O3      2
## 83    11     2    0    0    1   O3      2
## 84    12     2    0    0    1   O3      2
## 85    13     2    0    0    1   O3      2
## 86    14     2    0    0    1   O3      2
## 87    15     2    0    0    1   O3      2
## 88    16     2    0    0    1   O3      2
## 89    17     2    0    0    1   O3      2
## 90    18     2    0    0    1   O3      2
## 91    19     2    0    0    1   O3      2
## 92    20     2    0    0    1   O3      2
## 93    21     2   NA   NA   NA <NA>      2
## 94    22     2   NA   NA   NA <NA>      2
## 95    23     2   NA   NA   NA <NA>      2
## 96    24     2   NA   NA   NA <NA>      2
## 97    25     2   NA   NA   NA <NA>      2
## 98    26     2    1    0    0   O1      2
## 99    27     2    1    0    0   O1      2
## 100   28     2    1    0    0   O1      2
## 101   29     2    1    0    0   O1      2
## 102   30     2    1    0    0   O1      2
## 103   31     2    1    0    0   O1      2
## 104   32     2    1    0    0   O1      2
## 105   33     2    1    0    0   O1      2
## 106   34     2    1    0    0   O1      2
## 107   35     2    1    0    0   O1      2
## 108   36     2    1    0    0   O1      2
## 109   37     2    1    0    0   O1      2
## 110   38     2    1    0    0   O1      2
## 111   39     2    1    0    0   O1      2
## 112   40     2    1    0    0   O1      2
## 113   41     2    1    0    0   O1      2
## 114   42     2    1    0    0   O1      2
## 115   43     2   NA   NA   NA <NA>      2
## 116   44     2   NA   NA   NA <NA>      2
## 117   45     2   NA   NA   NA <NA>      2
## 118   46     2   NA   NA   NA <NA>      2
## 119   47     2   NA   NA   NA <NA>      2
## 120   48     2    0    1    0   O2      2
## 121   49     2    0    1    0   O2      2
## 122   50     2    0    1    0   O2      2
## 123   51     2    0    1    0   O2      2
## 124   52     2    0    1    0   O2      2
## 125   53     2    0    1    0   O2      2
## 126   54     2    0    1    0   O2      2
## 127   55     2    0    1    0   O2      2
## 128   56     2    0    1    0   O2      2
## 129   57     2    0    1    0   O2      2
## 130   58     2    0    1    0   O2      2
## 131   59     2    0    1    0   O2      2
## 132   60     2    0    1    0   O2      2
## 133   61     2    0    1    0   O2      2
## 134   62     2    0    1    0   O2      2
## 135   63     2    0    1    0   O2      2
## 136   64     2    0    1    0   O2      2
## 137   65     2    0    1    0   O2      2
## 138   66     2    0    1    0   O2      2
## 139   67     2    0    1    0   O2      2
## 140   68     2   NA   NA   NA <NA>      2
## 141   69     2   NA   NA   NA <NA>      2
## 142   70     2   NA   NA   NA <NA>      2
## 143   71     2   NA   NA   NA <NA>      2
## 144   72     2   NA   NA   NA <NA>      2
## 145    1     3    0    1    0   O2      3
## 146    2     3    0    1    0   O2      3
## 147    3     3    0    1    0   O2      3
## 148    4     3    0    1    0   O2      3
## 149    5     3    0    1    0   O2      3
## 150    6     3    0    1    0   O2      3
## 151    7     3    0    1    0   O2      3
## 152    8     3    0    1    0   O2      3
## 153    9     3    0    1    0   O2      3
## 154   10     3    0    1    0   O2      3
## 155   11     3   NA   NA   NA <NA>      3
## 156   12     3   NA   NA   NA <NA>      3
## 157   13     3   NA   NA   NA <NA>      3
## 158   14     3   NA   NA   NA <NA>      3
## 159   15     3   NA   NA   NA <NA>      3
## 160   16     3    0    1    0   O2      3
## 161   17     3    0    1    0   O2      3
## 162   18     3    0    1    0   O2      3
## 163   19     3    0    1    0   O2      3
## 164   20     3    0    1    0   O2      3
## 165   21     3    0    1    0   O2      3
## 166   22     3    0    1    0   O2      3
## 167   23     3    0    1    0   O2      3
## 168   24     3    0    1    0   O2      3
## 169   25     3    0    1    0   O2      3
## 170   26     3    0    0    1   O3      3
## 171   27     3    0    0    1   O3      3
## 172   28     3    0    0    1   O3      3
## 173   29     3    0    0    1   O3      3
## 174   30     3    0    0    1   O3      3
## 175   31     3    0    0    1   O3      3
## 176   32     3    0    0    1   O3      3
## 177   33     3    0    0    1   O3      3
## 178   34     3    0    0    1   O3      3
## 179   35     3    0    0    1   O3      3
## 180   36     3    0    0    1   O3      3
## 181   37     3    0    0    1   O3      3
## 182   38     3   NA   NA   NA <NA>      3
## 183   39     3   NA   NA   NA <NA>      3
## 184   40     3    0    0    1   O3      3
## 185   41     3    0    0    1   O3      3
## 186   42     3    0    0    1   O3      3
## 187   43     3    0    0    1   O3      3
## 188   44     3    0    0    1   O3      3
## 189   45     3    0    0    1   O3      3
## 190   46     3    0    0    1   O3      3
## 191   47     3    0    0    1   O3      3
## 192   48     3    1    0    0   O1      3
## 193   49     3    1    0    0   O1      3
## 194   50     3    1    0    0   O1      3
## 195   51     3    1    0    0   O1      3
## 196   52     3    1    0    0   O1      3
## 197   53     3    1    0    0   O1      3
## 198   54     3    1    0    0   O1      3
## 199   55     3    1    0    0   O1      3
## 200   56     3    1    0    0   O1      3
## 201   57     3    1    0    0   O1      3
## 202   58     3   NA   NA   NA <NA>      3
## 203   59     3   NA   NA   NA <NA>      3
## 204   60     3   NA   NA   NA <NA>      3
## 205   61     3   NA   NA   NA <NA>      3
## 206   62     3   NA   NA   NA <NA>      3
## 207   63     3    1    0    0   O1      3
## 208   64     3    1    0    0   O1      3
## 209   65     3    1    0    0   O1      3
## 210   66     3    1    0    0   O1      3
## 211   67     3    1    0    0   O1      3
## 212   68     3    1    0    0   O1      3
## 213   69     3    1    0    0   O1      3
## 214   70     3    1    0    0   O1      3
## 215   71     3    1    0    0   O1      3
## 216   72     3    1    0    0   O1      3
## 217    1     4    0    0    1   O3      4
## 218    2     4    0    0    1   O3      4
## 219    3     4    0    0    1   O3      4
## 220    4     4    0    0    1   O3      4
## 221    5     4    0    0    1   O3      4
## 222    6     4    0    0    1   O3      4
## 223    7     4    0    0    1   O3      4
## 224    8     4    0    0    1   O3      4
## 225    9     4    0    0    1   O3      4
## 226   10     4    0    0    1   O3      4
## 227   11     4    0    0    1   O3      4
## 228   12     4    0    0    1   O3      4
## 229   13     4    0    0    1   O3      4
## 230   14     4    0    0    1   O3      4
## 231   15     4    0    0    1   O3      4
## 232   16     4   NA   NA   NA <NA>      4
## 233   17     4   NA   NA   NA <NA>      4
## 234   18     4   NA   NA   NA <NA>      4
## 235   19     4   NA   NA   NA <NA>      4
## 236   20     4   NA   NA   NA <NA>      4
## 237   21     4   NA   NA   NA <NA>      4
## 238   22     4   NA   NA   NA <NA>      4
## 239   23     4   NA   NA   NA <NA>      4
## 240   24     4   NA   NA   NA <NA>      4
## 241   25     4   NA   NA   NA <NA>      4
## 242   26     4   NA   NA   NA <NA>      4
## 243   27     4   NA   NA   NA <NA>      4
## 244   28     4   NA   NA   NA <NA>      4
## 245   29     4   NA   NA   NA <NA>      4
## 246   30     4    1    0    0   O1      4
## 247   31     4    1    0    0   O1      4
## 248   32     4    1    0    0   O1      4
## 249   33     4    1    0    0   O1      4
## 250   34     4    1    0    0   O1      4
## 251   35     4    1    0    0   O1      4
## 252   36     4    1    0    0   O1      4
## 253   37     4    1    0    0   O1      4
## 254   38     4    1    0    0   O1      4
## 255   39     4    1    0    0   O1      4
## 256   40     4    1    0    0   O1      4
## 257   41     4    1    0    0   O1      4
## 258   42     4    1    0    0   O1      4
## 259   43     4    1    0    0   O1      4
## 260   44     4    1    0    0   O1      4
## 261   45     4    1    0    0   O1      4
## 262   46     4    1    0    0   O1      4
## 263   47     4    1    0    0   O1      4
## 264   48     4    0    1    0   O2      4
## 265   49     4    0    1    0   O2      4
## 266   50     4    0    1    0   O2      4
## 267   51     4    0    1    0   O2      4
## 268   52     4    0    1    0   O2      4
## 269   53     4    0    1    0   O2      4
## 270   54     4    0    1    0   O2      4
## 271   55     4    0    1    0   O2      4
## 272   56     4    0    1    0   O2      4
## 273   57     4    0    1    0   O2      4
## 274   58     4    0    1    0   O2      4
## 275   59     4    0    1    0   O2      4
## 276   60     4    0    1    0   O2      4
## 277   61     4    0    1    0   O2      4
## 278   62     4    0    1    0   O2      4
## 279   63     4   NA   NA   NA <NA>      4
## 280   64     4   NA   NA   NA <NA>      4
## 281   65     4   NA   NA   NA <NA>      4
## 282   66     4   NA   NA   NA <NA>      4
## 283   67     4   NA   NA   NA <NA>      4
## 284   68     4   NA   NA   NA <NA>      4
## 285   69     4   NA   NA   NA <NA>      4
## 286   70     4   NA   NA   NA <NA>      4
## 287   71     4   NA   NA   NA <NA>      4
## 288   72     4   NA   NA   NA <NA>      4
## 289    1     5   NA   NA   NA <NA>      5
## 290    2     5   NA   NA   NA <NA>      5
## 291    3     5   NA   NA   NA <NA>      5
## 292    4     5   NA   NA   NA <NA>      5
## 293    5     5   NA   NA   NA <NA>      5
## 294    6     5   NA   NA   NA <NA>      5
## 295    7     5   NA   NA   NA <NA>      5
## 296    8     5   NA   NA   NA <NA>      5
## 297    9     5   NA   NA   NA <NA>      5
## 298   10     5   NA   NA   NA <NA>      5
## 299   11     5    1    0    0   O1      5
## 300   12     5    1    0    0   O1      5
## 301   13     5    1    0    0   O1      5
## 302   14     5    1    0    0   O1      5
## 303   15     5    1    0    0   O1      5
## 304   16     5    1    0    0   O1      5
## 305   17     5    1    0    0   O1      5
## 306   18     5    1    0    0   O1      5
## 307   19     5    1    0    0   O1      5
## 308   20     5    1    0    0   O1      5
## 309   21     5    1    0    0   O1      5
## 310   22     5    1    0    0   O1      5
## 311   23     5    1    0    0   O1      5
## 312   24     5    1    0    0   O1      5
## 313   25     5    1    0    0   O1      5
## 314   26     5   NA   NA   NA <NA>      5
## 315   27     5   NA   NA   NA <NA>      5
## 316   28     5   NA   NA   NA <NA>      5
## 317   29     5   NA   NA   NA <NA>      5
## 318   30     5   NA   NA   NA <NA>      5
## 319   31     5   NA   NA   NA <NA>      5
## 320   32     5   NA   NA   NA <NA>      5
## 321   33     5   NA   NA   NA <NA>      5
## 322   34     5    0    1    0   O2      5
## 323   35     5    0    1    0   O2      5
## 324   36     5    0    1    0   O2      5
## 325   37     5    0    1    0   O2      5
## 326   38     5    0    1    0   O2      5
## 327   39     5    0    1    0   O2      5
## 328   40     5    0    1    0   O2      5
## 329   41     5    0    1    0   O2      5
## 330   42     5    0    1    0   O2      5
## 331   43     5    0    1    0   O2      5
## 332   44     5    0    1    0   O2      5
## 333   45     5    0    1    0   O2      5
## 334   46     5    0    1    0   O2      5
## 335   47     5    0    1    0   O2      5
## 336   48     5   NA   NA   NA <NA>      5
## 337   49     5   NA   NA   NA <NA>      5
## 338   50     5   NA   NA   NA <NA>      5
## 339   51     5   NA   NA   NA <NA>      5
## 340   52     5   NA   NA   NA <NA>      5
## 341   53     5   NA   NA   NA <NA>      5
## 342   54     5   NA   NA   NA <NA>      5
## 343   55     5   NA   NA   NA <NA>      5
## 344   56     5   NA   NA   NA <NA>      5
## 345   57     5   NA   NA   NA <NA>      5
## 346   58     5    0    0    1   O3      5
## 347   59     5    0    0    1   O3      5
## 348   60     5    0    0    1   O3      5
## 349   61     5    0    0    1   O3      5
## 350   62     5    0    0    1   O3      5
## 351   63     5    0    0    1   O3      5
## 352   64     5    0    0    1   O3      5
## 353   65     5    0    0    1   O3      5
## 354   66     5    0    0    1   O3      5
## 355   67     5    0    0    1   O3      5
## 356   68     5    0    0    1   O3      5
## 357   69     5    0    0    1   O3      5
## 358   70     5    0    0    1   O3      5
## 359   71     5    0    0    1   O3      5
## 360   72     5    0    0    1   O3      5
## 
## $nsurveyseason
## [1] 5
## 
## $title
## [1] "weta SSSS"
## 
## $unitnames
##  [1] "unit1"  "unit2"  "unit3"  "unit4"  "unit5"  "unit6"  "unit7" 
##  [8] "unit8"  "unit9"  "unit10" "unit11" "unit12" "unit13" "unit14"
## [15] "unit15" "unit16" "unit17" "unit18" "unit19" "unit20" "unit21"
## [22] "unit22" "unit23" "unit24" "unit25" "unit26" "unit27" "unit28"
## [29] "unit29" "unit30" "unit31" "unit32" "unit33" "unit34" "unit35"
## [36] "unit36" "unit37" "unit38" "unit39" "unit40" "unit41" "unit42"
## [43] "unit43" "unit44" "unit45" "unit46" "unit47" "unit48" "unit49"
## [50] "unit50" "unit51" "unit52" "unit53" "unit54" "unit55" "unit56"
## [57] "unit57" "unit58" "unit59" "unit60" "unit61" "unit62" "unit63"
## [64] "unit64" "unit65" "unit66" "unit67" "unit68" "unit69" "unit70"
## [71] "unit71" "unit72"
## 
## $surveynames
## [1] "1-1" "1-2" "1-3" "1-4" "1-5"
## 
## $paoname
## [1] "pres.pao"
## 
## $frq
##  [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [36] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [71] 1 1
## 
## attr(,"class")
## [1] "pao"
# Fit some models.
# Note that formula DO NOT HAVE AN = SIGN
mod.pdot <- RPresence::occMod(model=list(psi~1, p~1), type="so", data=weta.pao)
## PRESENCE Version 2.12.21.
summary(mod.pdot)
## Model name=psi()p()
## AIC=265.7872
## -2*log-likelihood=261.7872
## num. par=2
# look at estimated occupancy probability. RPresence gives for EACH site in case it depends on covariates
mod.pdot.psi <-mod.pdot$real$psi[1,]  # occupancy probability
mod.pdot.psi
##                 est         se lower_0.95 upper_0.95
## psi_unit1 0.6165958 0.08854195  0.4356219   0.770157
# look at the estimated probability of detection. It gives an estimate for every site at very visit
mod.pdot.p   <- mod.pdot$real$p[seq(1, by=nrow(input.history), length.out=ncol(input.history)),]
mod.pdot.p
##                est         se lower_0.95 upper_0.95
## p1_unit1 0.3493651 0.05372869  0.2525413  0.4604435
## p2_unit1 0.3493651 0.05372869  0.2525413  0.4604435
## p3_unit1 0.3493651 0.05372869  0.2525413  0.4604435
## p4_unit1 0.3493651 0.05372869  0.2525413  0.4604435
## p5_unit1 0.3493651 0.05372869  0.2525413  0.4604435
# alternatively
RPresence::print_one_site_estimates(mod.pdot, site = 1)
## psi()p() 
##                     est         se lower_0.95 upper_0.95
## psi_psi_unit1 0.6165958 0.08854195  0.4356219  0.7701570
## p_p1_unit1    0.3493651 0.05372869  0.2525413  0.4604435
# Impact of browse.
# Use the two indicator variables or the categorized column
# This give identical results

# Cell means models.
# We need to EXCLUDE the intercept if we are using the two indicator variables.
mod.pdot.psiB.1 <- RPresence::occMod(model=list(psi~-1+Browsed+Unbrowsed, p~1), type="so", data=weta.pao)
## PRESENCE Version 2.12.21.
summary(mod.pdot.psiB.1)
## Model name=psi(-1 P Browsed P Unbrowsed)p()
## AIC=264.2643
## -2*log-likelihood=258.2643
## num. par=3
names(mod.pdot.psiB.1)
##  [1] "modname"     "model"       "dmat"        "data"        "outfile"    
##  [6] "neg2loglike" "npar"        "aic"         "beta"        "real"       
## [11] "derived"     "gof"         "warnings"    "version"
mod.pdot.psiB.1.psi <-mod.pdot.psiB.1$real$psi  # occupancy probability
mod.pdot.psiB.1.psi[1:5,]
##                 est        se lower_0.95 upper_0.95
## psi_unit1 0.7593708 0.1198231  0.4660490  0.9194190
## psi_unit2 0.7593708 0.1198231  0.4660490  0.9194190
## psi_unit3 0.7593708 0.1198231  0.4660490  0.9194190
## psi_unit4 0.4809982 0.1078853  0.2843322  0.6837339
## psi_unit5 0.7593708 0.1198231  0.4660490  0.9194190
# This is the logit occupancy for each browse category
mod.pdot.psiB.1$dmat$psi
##     a1            a2             
## psi "psi.Browsed" "psi.Unbrowsed"
mod.pdot.psiB.1$beta$psi
##                            est       se
## A1_psi.psi.Browsed    1.149233 0.655750
## A2_psi.psi.Unbrowsed -0.076044 0.432165
mod.pdot.psiB.1.oddsratio.browse <- exp( sum(c(1,-1)*mod.pdot.psiB.1$beta$psi))
mod.pdot.psiB.1.oddsratio.browse
## [1] 4.258266
# Alternate way for cell means models.
mod.pdot.psiB.4 <- RPresence::occMod(model=list(psi~-1+BrowCat, p~1), type="so", data=weta.pao)
## PRESENCE Version 2.12.21.
summary(mod.pdot.psiB.4)
## Model name=psi(-1 P BrowCat)p()
## AIC=264.2643
## -2*log-likelihood=258.2643
## num. par=3
names(mod.pdot.psiB.4)
##  [1] "modname"     "model"       "dmat"        "data"        "outfile"    
##  [6] "neg2loglike" "npar"        "aic"         "beta"        "real"       
## [11] "derived"     "gof"         "warnings"    "version"
mod.pdot.psiB.4.psi <-mod.pdot.psiB.4$real$psi  # occupancy probability
mod.pdot.psiB.4.psi[1:5,]
##                 est        se lower_0.95 upper_0.95
## psi_unit1 0.7593708 0.1198231  0.4660490  0.9194190
## psi_unit2 0.7593708 0.1198231  0.4660490  0.9194190
## psi_unit3 0.7593708 0.1198231  0.4660490  0.9194190
## psi_unit4 0.4809982 0.1078853  0.2843322  0.6837339
## psi_unit5 0.7593708 0.1198231  0.4660490  0.9194190
# This is the logit occupancy for each browse category
mod.pdot.psiB.4$dmat$psi
##     a1             a2            
## psi "psi.BrowCatb" "psi.BrowCatn"
mod.pdot.psiB.4$beta$psi
##                           est       se
## A1_psi.psi.BrowCatb  1.149233 0.655750
## A2_psi.psi.BrowCatn -0.076044 0.432165
mod.pdot.psiB.4.oddsratio.browse <- exp( sum(c(1,-1)*mod.pdot.psiB.4$beta$psi))
mod.pdot.psiB.4.oddsratio.browse
## [1] 4.258266
# We can use just a single Browser indicator which is the cell effects model.
mod.pdot.psiB.2 <- RPresence::occMod(model=list(psi~Browsed, p~1), type="so", data=weta.pao)
## PRESENCE Version 2.12.21.
summary(mod.pdot.psiB.2)
## Model name=psi(Browsed)p()
## AIC=264.2643
## -2*log-likelihood=258.2643
## num. par=3
names(mod.pdot.psiB.2)
##  [1] "modname"     "model"       "dmat"        "data"        "outfile"    
##  [6] "neg2loglike" "npar"        "aic"         "beta"        "real"       
## [11] "derived"     "gof"         "warnings"    "version"
mod.pdot.psiB.2.psi <-mod.pdot.psiB.2$real$psi  # occupancy probability
mod.pdot.psiB.2.psi[1:5,]
##                 est        se lower_0.95 upper_0.95
## psi_unit1 0.7593710 0.1198227  0.4660500  0.9194189
## psi_unit2 0.7593710 0.1198227  0.4660500  0.9194189
## psi_unit3 0.7593710 0.1198227  0.4660500  0.9194189
## psi_unit4 0.4809982 0.1078871  0.2843294  0.6837368
## psi_unit5 0.7593710 0.1198227  0.4660500  0.9194189
# This is the logit occupancy the baseline and the log(odds ratio) of the two 
# browse classes
mod.pdot.psiB.2$dmat$psi
##     a1  a2           
## psi "1" "psi.Browsed"
mod.pdot.psiB.2$beta$psi
##                          est       se
## A1_psi             -0.076044 0.432172
## A2_psi.psi.Browsed  1.225278 0.720562
mod.pdot.psiB.2.oddsratio.browse <- exp( sum(c(0,1)*mod.pdot.psiB.2$beta$psi))
mod.pdot.psiB.2.oddsratio.browse
## [1] 6.999509
# We can use just a categorical browser variable (preferred).
mod.pdot.psiB.3 <- RPresence::occMod(model=list(psi~BrowCat, p~1), type="so", data=weta.pao)
## PRESENCE Version 2.12.21.
summary(mod.pdot.psiB.3)
## Model name=psi(BrowCat)p()
## AIC=264.2643
## -2*log-likelihood=258.2643
## num. par=3
names(mod.pdot.psiB.3)
##  [1] "modname"     "model"       "dmat"        "data"        "outfile"    
##  [6] "neg2loglike" "npar"        "aic"         "beta"        "real"       
## [11] "derived"     "gof"         "warnings"    "version"
mod.pdot.psiB.3.psi <-mod.pdot.psiB.3$real$psi  # occupancy probability
mod.pdot.psiB.3.psi[1:5,]
##                 est        se lower_0.95 upper_0.95
## psi_unit1 0.7593708 0.1197860  0.4661479  0.9193896
## psi_unit2 0.7593708 0.1197860  0.4661479  0.9193896
## psi_unit3 0.7593708 0.1197860  0.4661479  0.9193896
## psi_unit4 0.4809979 0.1078882  0.2843274  0.6837386
## psi_unit5 0.7593708 0.1197860  0.4661479  0.9193896
# This is the logit occupancy the baseline and the log(odds ratio) of the two 
# browse classes
mod.pdot.psiB.3$dmat$psi
##     a1  a2            
## psi "1" "psi.BrowCatn"
mod.pdot.psiB.3$beta$psi
##                           est       se
## A1_psi               1.149233 0.655547
## A2_psi.psi.BrowCatn -1.225278 0.720332
mod.pdot.psiB.3.oddsratio.browse <- exp( sum(c(0,-1)*mod.pdot.psiB.3$beta$psi))
mod.pdot.psiB.3.oddsratio.browse
## [1] 1.656896
# Impact of browse on detectability as well?.

mod.pB.psiB <- RPresence::occMod(model=list(psi~BrowCat, p~BrowCat), type="so", data=weta.pao)
## PRESENCE Version 2.12.21.
summary(mod.pB.psiB)
## Model name=psi(BrowCat)p(BrowCat)
## AIC=266.2606
## -2*log-likelihood=258.2606
## num. par=4
names(mod.pB.psiB)
##  [1] "modname"     "model"       "dmat"        "data"        "outfile"    
##  [6] "neg2loglike" "npar"        "aic"         "beta"        "real"       
## [11] "derived"     "gof"         "warnings"    "version"
mod.pB.psiB.psi <-mod.pB.psiB$real$psi  # occupancy probability
mod.pB.psiB.psi[1:5,]
##                 est        se lower_0.95 upper_0.95
## psi_unit1 0.7565126 0.1276939  0.4439733  0.9236045
## psi_unit2 0.7565126 0.1276939  0.4439733  0.9236045
## psi_unit3 0.7565126 0.1276939  0.4439733  0.9236045
## psi_unit4 0.4839101 0.1190770  0.2691584  0.7047733
## psi_unit5 0.7565126 0.1276939  0.4439733  0.9236045
mod.pB.psiB.p <-mod.pB.psiB$real$p  # detection probability
mod.pB.psiB.p[1:5,]
##                est         se lower_0.95 upper_0.95
## p1_unit1 0.3518920 0.06891346  0.2309473  0.4953761
## p1_unit2 0.3518920 0.06891346  0.2309473  0.4953761
## p1_unit3 0.3518920 0.06891346  0.2309473  0.4953761
## p1_unit4 0.3451663 0.08600807  0.2000208  0.5263392
## p1_unit5 0.3518920 0.06891346  0.2309473  0.4953761
# This is the logit occupancy for each browse category
mod.pB.psiB$dmat$psi
##     a1  a2            
## psi "1" "psi.BrowCatn"
mod.pB.psiB$beta$psi
##                           est       se
## A1_psi               1.133654 0.693230
## A2_psi.psi.BrowCatn -1.198036 0.841271
mod.pB.psiB.oddsratio.browse <- exp( sum(c(0,-1)*mod.pB.psiB$beta$psi))
mod.pB.psiB.oddsratio.browse
## [1] 1.4287
# Model where p(t) varies across survey occasions but psi(browse) 
# Not sure why SURVEY key work no longer works for time varying factor
# but we have our own covariate (visit). Be sure to declare "visit" as a character or as a actor
# 
mod.pt.psiB <- RPresence::occMod(model=list(psi~BrowCat, p~visit), type="so", data=weta.pao)
## PRESENCE Version 2.12.21.
summary(mod.pt.psiB)
## Model name=psi(BrowCat)p(visit)
## AIC=259.4368
## -2*log-likelihood=245.4368
## num. par=7
mod.pt.psiB$real$psi[1:5,]
##                 est        se lower_0.95 upper_0.95
## psi_unit1 0.7699149 0.1232454  0.4611357  0.9290003
## psi_unit2 0.7699149 0.1232454  0.4611357  0.9290003
## psi_unit3 0.7699149 0.1232454  0.4611357  0.9290003
## psi_unit4 0.4931709 0.1116897  0.2884113  0.7002475
## psi_unit5 0.7699149 0.1232454  0.4611357  0.9290003
mod.pt.psiB$real$p[seq(1, by=nrow(input.history), length.out=ncol(input.history)),]
##                est         se lower_0.95 upper_0.95
## p1_unit1 0.3520562 0.09836946 0.18920071  0.5585270
## p2_unit1 0.3175294 0.08921332 0.17192709  0.5104317
## p3_unit1 0.1694830 0.06707655 0.07424149  0.3417958
## p4_unit1 0.3115815 0.08815339 0.16822898  0.5031897
## p5_unit1 0.5917252 0.10433600 0.38334739  0.7716353
print_one_site_estimates(mod.pt.psiB, site = 1)
## psi(BrowCat)p(visit) 
##                     est         se lower_0.95 upper_0.95
## psi_psi_unit1 0.7699149 0.12324545  0.4611357  0.9290003
## p_p1_unit1    0.3520562 0.09836946  0.1892007  0.5585270
fitted(mod.pt.psiB, param="psi")[1,]
##                 est        se lower_0.95 upper_0.95
## psi_unit1 0.7699149 0.1232454  0.4611357  0.9290003
# Model where p varies by observer but constant over time psi(browse) 
# 
mod.pO.psiB <- RPresence::occMod(model=list(psi~BrowCat, p~Obs), type="so", data=weta.pao)
## PRESENCE Version 2.12.21.
summary(mod.pt.psiB)
## Model name=psi(BrowCat)p(visit)
## AIC=259.4368
## -2*log-likelihood=245.4368
## num. par=7
mod.pO.psiB$real$psi[1:5,]
##                 est        se lower_0.95 upper_0.95
## psi_unit1 0.7535936 0.1163803  0.4723969  0.9126370
## psi_unit2 0.7535936 0.1163803  0.4723969  0.9126370
## psi_unit3 0.7535936 0.1163803  0.4723969  0.9126370
## psi_unit4 0.4846713 0.1084314  0.2865457  0.6877352
## psi_unit5 0.7535936 0.1163803  0.4723969  0.9126370
mod.pO.psiB$real$p[seq(1, by=nrow(input.history), length.out=ncol(input.history)),]
##                est         se lower_0.95 upper_0.95
## p1_unit1 0.2235210 0.06272749  0.1241580  0.3689096
## p2_unit1 0.4462478 0.08080860  0.2980129  0.6047011
## p3_unit1 0.3786094 0.07998710  0.2383368  0.5426237
## p4_unit1 0.4462478 0.08080860  0.2980129  0.6047011
## p5_unit1        NA         NA         NA         NA
print_one_site_estimates(mod.pO.psiB, site = 1)
## psi(BrowCat)p(Obs) 
##                     est         se lower_0.95 upper_0.95
## psi_psi_unit1 0.7535936 0.11638027  0.4723969  0.9126370
## p_p1_unit1    0.2235210 0.06272749  0.1241580  0.3689096
fitted(mod.pO.psiB, param="psi")[1:5,]
##                 est        se lower_0.95 upper_0.95
## psi_unit1 0.7535936 0.1163803  0.4723969  0.9126370
## psi_unit2 0.7535936 0.1163803  0.4723969  0.9126370
## psi_unit3 0.7535936 0.1163803  0.4723969  0.9126370
## psi_unit4 0.4846713 0.1084314  0.2865457  0.6877352
## psi_unit5 0.7535936 0.1163803  0.4723969  0.9126370
# Model where p varies by observer + visit but constant over time psi(browse)
# besure that obs and visit are declared as character
# 
mod.pOpV.psiB <- RPresence::occMod(model=list(psi~BrowCat, p~Obs+visit), type="so", data=weta.pao)
## PRESENCE Version 2.12.21.
summary(mod.pOpV.psiB)
## Model name=psi(BrowCat)p(Obs P visit)
## AIC=257.5994
## -2*log-likelihood=239.5994
## num. par=9
mod.pOpV.psiB$real$psi[1:5,]
##                 est        se lower_0.95 upper_0.95
## psi_unit1 0.7673332 0.1206126  0.4673488  0.9253540
## psi_unit2 0.7673332 0.1206126  0.4673488  0.9253540
## psi_unit3 0.7673332 0.1206126  0.4673488  0.9253540
## psi_unit4 0.5059982 0.1148981  0.2938164  0.7160411
## psi_unit5 0.7673332 0.1206126  0.4673488  0.9253540
mod.pOpV.psiB$real$p[seq(1, by=nrow(input.history), length.out=ncol(input.history)),]
##                est         se lower_0.95 upper_0.95
## p1_unit1 0.2142123 0.08829610 0.08884418  0.4325123
## p2_unit1 0.4050194 0.11960241 0.20466934  0.6429461
## p3_unit1 0.1799850 0.08137467 0.06932630  0.3927389
## p4_unit1 0.4254702 0.12515648 0.21351570  0.6688854
## p5_unit1        NA         NA         NA         NA
print_one_site_estimates(mod.pOpV.psiB, site = 1)
## psi(BrowCat)p(Obs P visit) 
##                     est        se lower_0.95 upper_0.95
## psi_psi_unit1 0.7673332 0.1206126 0.46734885  0.9253540
## p_p1_unit1    0.2142123 0.0882961 0.08884418  0.4325123
fitted(mod.pOpV.psiB, param="psi")[1:5,]
##                 est        se lower_0.95 upper_0.95
## psi_unit1 0.7673332 0.1206126  0.4673488  0.9253540
## psi_unit2 0.7673332 0.1206126  0.4673488  0.9253540
## psi_unit3 0.7673332 0.1206126  0.4673488  0.9253540
## psi_unit4 0.5059982 0.1148981  0.2938164  0.7160411
## psi_unit5 0.7673332 0.1206126  0.4673488  0.9253540
# Other models 

mod.pOpVpB.psiB <- RPresence::occMod(model=list(psi~BrowCat, p~Obs+visit+BrowCat), type="so", data=weta.pao)
## PRESENCE Version 2.12.21.
mod.pOpVpB.psi. <- RPresence::occMod(model=list(psi~1, p~Obs+visit+BrowCat), type="so", data=weta.pao)
## PRESENCE Version 2.12.21.
mod.pOpVpB.psi. <- RPresence::occMod(model=list(psi~1, p~Obs+visit), type="so", data=weta.pao)
## PRESENCE Version 2.12.21.
# Model averaging
models<-list(mod.pdot, 
             mod.pdot.psiB.1,
             mod.pB.psiB, 
             mod.pt.psiB,
             mod.pO.psiB,
             mod.pOpV.psiB,
             mod.pOpVpB.psiB,
             mod.pOpVpB.psi.,
             mod.pOpVpB.psi.
)
results<-RPresence::createAicTable(models)
summary(results)
##                                  Model DAIC    wgt npar neg2ll warn.conv
## 1           psi(BrowCat)p(Obs P visit) 0.00 0.3138    9 239.60         0
## 2                  psi()p(Obs P visit) 0.95 0.1954    8 242.55         0
## 3                  psi()p(Obs P visit) 0.95 0.1954    8 242.55         0
## 4                 psi(BrowCat)p(visit) 1.84 0.1252    7 245.44         0
## 5 psi(BrowCat)p(Obs P visit P BrowCat) 2.00 0.1155   10 239.60         0
## 6                   psi(BrowCat)p(Obs) 4.44 0.0340    5 252.04         0
## 7     psi(-1 P Browsed P Unbrowsed)p() 6.66 0.0112    3 258.26         0
## 8                             psi()p() 8.19 0.0052    2 261.79         0
## 9               psi(BrowCat)p(BrowCat) 8.66 0.0041    4 258.26         0
##   warn.VC
## 1       0
## 2       0
## 3       0
## 4       0
## 5       0
## 6       0
## 7       0
## 8       0
## 9       0
RPresence::modAvg(results, param="psi")[1:5,]
##                 est        se lower_0.95 upper_0.95
## psi_unit1 0.7170024 0.1280240  0.4238522  0.8971786
## psi_unit2 0.7170024 0.1280240  0.4238522  0.8971786
## psi_unit3 0.7170024 0.1280240  0.4238522  0.8971786
## psi_unit4 0.5566424 0.1280841  0.3122397  0.7763918
## psi_unit5 0.7170024 0.1280240  0.4238522  0.8971786