# Single Species Single Season Occupancy
# Yellow-bellied toad
# Single Season Single Season occupancy
# RMark package
# 2018-12-02 Code contributed by Neil Faught
library(readxl)
library(RMark)
## This is RMark 2.2.5
## Documentation available at http://www.phidot.org/software/mark/rmark/RMarkDocumentation.zip
library(ggplot2)
# get the data read in
# Data for detections should be a data frame with rows corresponding to sites
# and columns to visits.
# The usual 1=detected; 0=not detected; NA=not visited is used.
input.detect <- readxl::read_excel(file.path("..","YellowBelliedToad.xlsx"),
sheet="detections")
# do some basic checks on your data
# e.g. check number of sites; number of visits etc
nrow(input.detect)
## [1] 572
ncol(input.detect)
## [1] 2
range(input.detect, na.rm=TRUE)
## [1] 0 1
sum(is.na(input.detect))
## [1] 0
head(input.detect)
## # A tibble: 6 x 2
## V1 V2
## <dbl> <dbl>
## 1 0 0
## 2 0 0
## 3 0 0
## 4 0 0
## 5 0 0
## 6 1.00 0
# Extract the history records and create a capture history
input.history <- data.frame(freq=1,
ch=apply(input.detect[,1:2],1,paste, collapse=""), stringsAsFactors=FALSE)
head(input.history)
## freq ch
## 1 1 00
## 2 1 00
## 3 1 00
## 4 1 00
## 5 1 00
## 6 1 10
# Change any NA to . in the chapter history
input.history$ch <- gsub("NA",".", input.history$ch, fixed=TRUE)
head(input.history)
## freq ch
## 1 1 00
## 2 1 00
## 3 1 00
## 4 1 00
## 5 1 00
## 6 1 10
# Get the site level covariates - none.
# Get the site x visit (sampling) covariates.
jdate <- readxl::read_excel(file.path("..","YellowBelliedToad.xlsx"),
sheet="JulianDate")
range(jdate)
## [1] 121 179
# standarize jdate
jdateS <- (jdate - 150)/10
names(jdate ) <- c('jdate1' ,'jdate2')
names(jdateS) <- c('jdateS1' ,'jdateS2')
# Sampling covariates must be added to the input.history as multiple columns
# We also need to create the quadratic terms in advance - this is a pain
jdateSQ <- jdateS
names(jdateSQ)<- c('jdateSQ1' , 'jdateSQ2')
jdateSQ <- jdateSQ^2
input.history <- cbind(input.history, jdate, jdateS, jdateSQ)
head(input.history)
## freq ch jdate1 jdate2 jdateS1 jdateS2 jdateSQ1 jdateSQ2
## 1 1 00 139 173 -1.1 2.3 1.21 5.29
## 2 1 00 128 148 -2.2 -0.2 4.84 0.04
## 3 1 00 130 147 -2.0 -0.3 4.00 0.09
## 4 1 00 130 144 -2.0 -0.6 4.00 0.36
## 5 1 00 128 148 -2.2 -0.2 4.84 0.04
## 6 1 10 145 175 -0.5 2.5 0.25 6.25
ybf.data <- process.data(data=input.history,
model="Occupancy")
summary(ybf.data)
## Length Class Mode
## data 8 data.frame list
## model 1 -none- character
## mixtures 1 -none- numeric
## freq 572 -none- numeric
## nocc 1 -none- numeric
## nocc.secondary 0 -none- NULL
## time.intervals 2 -none- numeric
## begin.time 1 -none- numeric
## age.unit 1 -none- numeric
## initial.ages 1 -none- numeric
## group.covariates 0 -none- NULL
## nstrata 1 -none- numeric
## strata.labels 0 -none- NULL
## counts 0 -none- NULL
## reverse 1 -none- logical
## areas 0 -none- NULL
## events 0 -none- NULL
# Set up survey covariates in the ddl (in this case none)
ybf.ddl <- make.design.data(ybf.data)
ybf.ddl
## $p
## par.index model.index group age time Age Time
## 1 1 1 1 0 1 0 0
## 2 2 2 1 1 2 1 1
##
## $Psi
## par.index model.index group age time Age Time
## 1 1 3 1 0 1 0 0
##
## $pimtypes
## $pimtypes$p
## $pimtypes$p$pim.type
## [1] "all"
##
##
## $pimtypes$Psi
## $pimtypes$Psi$pim.type
## [1] "all"
# What are the parameter names for Single Season Single Species models
setup.parameters("Occupancy", check=TRUE)
## [1] "p" "Psi"
# define the list of models to fit
# Notice the commas between the column and the placement of the quotes
model.list.csv <- textConnection("
p, Psi
~1, ~1
~time, ~1
~jdateS, ~1
~jdateS+jdateSQ, ~1")
model.list <- read.csv(model.list.csv, header=TRUE, as.is=TRUE, strip.white=TRUE)
model.list$model.number <- 1:nrow(model.list)
model.list
## p Psi model.number
## 1 ~1 ~1 1
## 2 ~time ~1 2
## 3 ~jdateS ~1 3
## 4 ~jdateS+jdateSQ ~1 4
# fit the models
myobs <- ls()
myobs <- myobs[ grepl("m...",myobs,fixed=TRUE)]
cat("Removing ", myobs, "\n")
## Removing
rm(list=myobs)
model.fits <- plyr::dlply(model.list, "model.number", function(x,input.data, input.ddl){
cat("\n\n***** Starting ", unlist(x), "\n")
#browser()
#fit <- myoccMod(model=list(as.formula(paste("psi",x$psi)),
fit <- RMark::mark(input.data, ddl=input.ddl,
model="Occupancy",
model.parameters=list(
Psi =list(formula=as.formula(eval(x$Psi))),
p =list(formula=as.formula(eval(x$p)))
)
#,brief=TRUE,output=FALSE, delete=TRUE
#,invisible=TRUE,output=TRUE # set for debugging
)
mnumber <- paste("m...",formatC(x$model.number, width = 3, format = "d", flag = "0"),sep="")
assign( mnumber, fit, envir=.GlobalEnv)
#browser()
fit
},input.data=ybf.data, input.ddl=ybf.ddl)
##
##
## ***** Starting ~1 ~1 1
##
## Output summary for Occupancy model
## Name : p(~1)Psi(~1)
##
## Npar : 2
## -2lnL: 866.5516
## AICc : 870.5727
##
## Beta
## estimate se lcl ucl
## p:(Intercept) 0.6613984 0.1781966 0.3121331 1.0106638
## Psi:(Intercept) -1.1031290 0.1125195 -1.3236673 -0.8825908
##
##
## Real Parameter p
## 1 2
## 0.6595745 0.6595745
##
##
## Real Parameter Psi
## 1
## 0.2491541
##
##
## ***** Starting ~time ~1 2
##
## Output summary for Occupancy model
## Name : p(~time)Psi(~1)
##
## Npar : 3
## -2lnL: 866.3015
## AICc : 872.3437
##
## Beta
## estimate se lcl ucl
## p:(Intercept) 0.6007739 0.2134029 0.1825042 1.0190436
## p:time2 0.1251631 0.2504897 -0.3657968 0.6161231
## Psi:(Intercept) -1.1037320 0.1124768 -1.3241865 -0.8832776
##
##
## Real Parameter p
## 1 2
## 0.6458333 0.673913
##
##
## Real Parameter Psi
## 1
## 0.2490413
##
##
## ***** Starting ~jdateS ~1 3
##
## Output summary for Occupancy model
## Name : p(~jdateS)Psi(~1)
##
## Npar : 3
## -2lnL: 862.8199
## AICc : 868.8622
##
## Beta
## estimate se lcl ucl
## p:(Intercept) 0.5014851 0.1920270 0.1251123 0.8778580
## p:jdateS -0.1849635 0.0958033 -0.3727380 0.0028110
## Psi:(Intercept) -1.1057834 0.1121358 -1.3255694 -0.8859973
##
##
## Real Parameter p
## 1 2
## 0.7041982 0.6188501
##
##
## Real Parameter Psi
## 1
## 0.2486578
##
##
## ***** Starting ~jdateS+jdateSQ ~1 4
##
## Output summary for Occupancy model
## Name : p(~jdateS + jdateSQ)Psi(~1)
##
## Npar : 4
## -2lnL: 813.0628
## AICc : 821.1333
##
## Beta
## estimate se lcl ucl
## p:(Intercept) 1.5096024 0.2945507 0.9322831 2.0869217
## p:jdateS -0.7217606 0.1984787 -1.1107789 -0.3327423
## p:jdateSQ -0.4799869 0.0929934 -0.6622541 -0.2977198
## Psi:(Intercept) -1.1609321 0.1071446 -1.3709355 -0.9509288
##
##
## Real Parameter p
## 1 2
## 0.6935011 0.7152739
##
##
## Real Parameter Psi
## 1
## 0.238498
# examine individula model results
model.number <-4
summary(model.fits[[model.number]])
## Output summary for Occupancy model
## Name : p(~jdateS + jdateSQ)Psi(~1)
##
## Npar : 4
## -2lnL: 813.0628
## AICc : 821.1333
##
## Beta
## estimate se lcl ucl
## p:(Intercept) 1.5096024 0.2945507 0.9322831 2.0869217
## p:jdateS -0.7217606 0.1984787 -1.1107789 -0.3327423
## p:jdateSQ -0.4799869 0.0929934 -0.6622541 -0.2977198
## Psi:(Intercept) -1.1609321 0.1071446 -1.3709355 -0.9509288
##
##
## Real Parameter p
## 1 2
## 0.6935011 0.7152739
##
##
## Real Parameter Psi
## 1
## 0.238498
model.fits[[model.number]]$results$real
## estimate se lcl ucl fixed note
## p g1 a0 t1 0.6935011 0.0427796 0.6039776 0.7704778
## p g1 a1 t2 0.7152739 0.0554979 0.5955663 0.8108052
## Psi g1 a0 t1 0.2384980 0.0194592 0.2024688 0.2786981
model.fits[[model.number]]$results$beta
## estimate se lcl ucl
## p:(Intercept) 1.5096024 0.2945507 0.9322831 2.0869217
## p:jdateS -0.7217606 0.1984787 -1.1107789 -0.3327423
## p:jdateSQ -0.4799869 0.0929934 -0.6622541 -0.2977198
## Psi:(Intercept) -1.1609321 0.1071446 -1.3709355 -0.9509288
model.fits[[model.number]]$results$derived
## $Occupancy
## estimate se lcl ucl
## 1 0.238498 0.01945924 0.2024688 0.2786981
get.real(model.fits[[model.number]], "Psi", se=TRUE)
## all.diff.index par.index estimate se lcl
## Psi g1 a0 t1 3 3 0.238498 0.0194592 0.2024688
## ucl fixed note group age time Age Time
## Psi g1 a0 t1 0.2786981 1 0 1 0 0
get.real(model.fits[[model.number]], "p", se=TRUE)
## all.diff.index par.index estimate se lcl
## p g1 a0 t1 1 1 0.6935011 0.0427796 0.6039776
## p g1 a1 t2 2 2 0.7152739 0.0554979 0.5955663
## ucl fixed note group age time Age Time
## p g1 a0 t1 0.7704778 1 0 1 0 0
## p g1 a1 t2 0.8108052 1 1 2 1 1
##############################################
# Collect models
model.set <- RMark::collect.models( type="Occupancy")
model.set
## model npar AICc DeltaAICc weight
## 4 p(~jdateS + jdateSQ)Psi(~1) 4 821.1333 0.00000 1.000000e+00
## 3 p(~jdateS)Psi(~1) 3 868.8622 47.72888 4.323208e-11
## 1 p(~1)Psi(~1) 2 870.5727 49.43942 1.838086e-11
## 2 p(~time)Psi(~1) 3 872.3437 51.21043 7.582233e-12
## Deviance
## 4 8.130628e+02
## 3 8.628199e+02
## 1 2.501630e-01
## 2 -1.136868e-13
names(model.set)
## [1] "m...001" "m...002" "m...003" "m...004" "model.table"
model.set$model.table
## p Psi model npar AICc
## 4 ~jdateS + jdateSQ ~1 p(~jdateS + jdateSQ)Psi(~1) 4 821.1333
## 3 ~jdateS ~1 p(~jdateS)Psi(~1) 3 868.8622
## 1 ~1 ~1 p(~1)Psi(~1) 2 870.5727
## 2 ~time ~1 p(~time)Psi(~1) 3 872.3437
## DeltaAICc weight Deviance
## 4 0.00000 1.000000e+00 8.130628e+02
## 3 47.72888 4.323208e-11 8.628199e+02
## 1 49.43942 1.838086e-11 2.501630e-01
## 2 51.21043 7.582233e-12 -1.136868e-13
# Get model averaged values
Psi.ma <- RMark::model.average(model.set, param="Psi")
Psi.ma
## par.index estimate se fixed note group age time
## Psi g1 a0 t1 3 0.238498 0.01945924 1 0 1
## Age Time
## Psi g1 a0 t1 0 0
# It is often convenient to estimate parameters (such as p) for each site using the
# values of the covariates specific for that site.
# This is similar to RPresence which gives estimates at each site.
# We create a data frame with the covariates etc as measured on the input.history dataframe.
# But we also need to add the appropriate index number for psi to the covariate data frame to account
# for the groups definition
p.covariates <- input.history
p.covariates$freq <- NULL
p.covariates$ch <- NULL
ybf.ddl$p
## par.index model.index group age time Age Time
## 1 1 1 1 0 1 0 0
## 2 2 2 1 1 2 1 1
p.covariates <- merge(ybf.ddl$p, p.covariates)
head(p.covariates)
## par.index model.index group age time Age Time jdate1 jdate2 jdateS1
## 1 1 1 1 0 1 0 0 139 173 -1.1
## 2 2 2 1 1 2 1 1 139 173 -1.1
## 3 1 1 1 0 1 0 0 128 148 -2.2
## 4 2 2 1 1 2 1 1 128 148 -2.2
## 5 1 1 1 0 1 0 0 130 147 -2.0
## 6 2 2 1 1 2 1 1 130 147 -2.0
## jdateS2 jdateSQ1 jdateSQ2
## 1 2.3 1.21 5.29
## 2 2.3 1.21 5.29
## 3 -0.2 4.84 0.04
## 4 -0.2 4.84 0.04
## 5 -0.3 4.00 0.09
## 6 -0.3 4.00 0.09
# we only want a prediction for that particular model.index.
# we need to create a variable "index" that has the model.index
p.covariates$index <- p.covariates$model.index
p.pred <- covariate.predictions(model.set,
data=p.covariates)
# Notice that there is problem in that if model.index =1, it used jdate1 as the predictor
# and if model.index==2, it used jdate2 as the predictor. There is no easy around thi!
head(p.pred$estimates)
## vcv.index model.index par.index par.index.1 model.index.1 group age time
## 1 1 1 1 1 1 1 0 1
## 2 1 1 2 2 2 1 1 2
## 3 1 1 1 1 1 1 0 1
## 4 1 1 2 2 2 1 1 2
## 5 1 1 1 1 1 1 0 1
## 6 1 1 2 2 2 1 1 2
## Age Time jdate1 jdate2 jdateS1 jdateS2 jdateSQ1 jdateSQ2 index
## 1 0 0 139 173 -1.1 2.3 1.21 5.29 1
## 2 1 1 139 173 -1.1 2.3 1.21 5.29 2
## 3 0 0 128 148 -2.2 -0.2 4.84 0.04 1
## 4 1 1 128 148 -2.2 -0.2 4.84 0.04 2
## 5 0 0 130 147 -2.0 -0.3 4.00 0.09 1
## 6 1 1 130 147 -2.0 -0.3 4.00 0.09 2
## estimate se lcl ucl fixed
## 1 0.84848335 0.03509380 0.76633291 0.9053204
## 2 0.06359116 0.05233808 0.01198212 0.2755048
## 3 0.68445878 0.04540351 0.58959625 0.7660933
## 4 0.83681999 0.04011721 0.74248671 0.9011953
## 5 0.73753117 0.04107207 0.64960843 0.8098497
## 6 0.84329235 0.03878903 0.75168677 0.9053585
ggplot(data=NULL, aes( y=estimate))+
ggtitle("Model averaged predictions of detection for each site")+
geom_point(data=p.pred$estimates[ p.pred$estimates$index==2,], aes(x=jdate2))+
geom_point(data=p.pred$estimates[ p.pred$estimates$index==1,], aes(x=jdate1))+
geom_ribbon(data=p.pred$estimates[ p.pred$estimates$index==1,],aes(x=jdate1, ymin=lcl, ymax=ucl), alpha=0.2)+
geom_ribbon(data=p.pred$estimates[ p.pred$estimates$index==2,],aes(x=jdate2, ymin=lcl, ymax=ucl), alpha=0.2)

# cleanup
cleanup(ask=FALSE)